

January 31, 2024

Alberta Environment and Protected Areas (EPA) Monitoring Branch 11th Floor Oxbridge Place 9820-106 Street Edmonton, Alberta T5K 2J6

RE: Monthly Ambient Air Monitoring Report

December 2023

Clean Harbors Canada, Inc. Approval 10348-03-01

To whom it may concern:

Clean Harbors Canada, Inc. (Clean Harbors) is presenting this Monthly Ambient Air Monitoring Report, which was prepared by GHD Limited (Consultant), for the reporting period of December 2023, to Alberta Environment and Protected Areas (EPA). The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta.

This ambient air monitoring program is conducted in accordance with the requirements outlined in the facility's amended Environmental Protection and Enhancement Act (EPEA) Approval, Approval No. 10348-03-01 (Approval). Clean Harbors' original Ambient Air Monitoring Program for Approval No. 10348-03-00 was initially approved on June 24, 2009. As part of the amended Approval requirements, the Facility submitted an Enhanced Ambient Air Quality Monitoring Program to Alberta EPA on September 14, 2022 (no formal approval has been provided by Alberta EPA). Operating under the Approval and the submitted program, Clean Harbors operates the following ambient air monitoring stations:

- Wind
 - Facility Meteorological Station EPA Station ID 00010348-C-1
 - Facility Site Station EPA Station ID 00010348-C-2
 - Ryley School Station EPA Station ID 00010348-C-3
- TSP
 - Facility Site Station EPA Station ID 00010348-I-2
 - Ryley School Station EPA Station ID 00010348-I-3
 - Highway 854 Lift Station EPA Station ID 00010348-I-1
- PM₁₀
 - Highway 854 Lift Station EPA Station ID 00010348-I-1

Included in this report are the following:

Summary of the ambient air monitoring program for December 2023

- Summary of AMD Electronic Transfer System submittals
- Results for Total Suspended Particulate Matter (TSP) reported in μg/m³
- Results for Particulate Matter ≤ 10 microns (PM₁₀) reported in µg/m³
- Results for metals if the TSP or PM₁₀ results were >50 μg/m³
- Results for Total Non-Methane Organic Compounds (TNMOC) and Volatile Organic Compounds (VOC)
- Wind frequency distribution tables, wind rose and monthly uptime

Should there be any questions and comments regarding this report, please do not hesitate to contact the undersigned.

Yours truly,

CLEAN HARBORS CANADA INC.

Stan Yuha

Facility Manager Ryley Facility

Alberta Environment and Protected Areas (EPA) Monthly Ambient Air Monitoring Report December 2023 Report Completed on January 31, 2024

Clean Harbors Environmental Services Inc.

Approval Number: 10348-03-01

Ryley Facility, Alberta

Table of Contents

1.	Intro	duction		1
	1.1	Contact	Information	3
2.	Sum	mary of Ar	mbient Air Monitoring Activities	4
3.	Sum	mary of El	ectronic Transfer System (ETS) Submittals	5
	3.1	AMD XM	1L Schema	5
	3.2	Ambient	Air Monitoring Program Laboratory Reports	6
	3.3	Ambient	Air Monitoring Program Calibration Reports	6
4.	Calib	ration and	Operation & Maintenance (O&M) Activities	6
	4.1		Meteorological Station for Wind Speed and Direction (EPA Station ID 000103	
	4.2	Facility S	Site Station for Wind Speed and Direction (EPA Station ID 00010348-C-2)	6
	4.3	Ryley So	chool Station for Wind Speed and Direction (EPA Station ID 00010348-C-3)	7
	4.4	Facility S	Site Station TSP Hi-Vol Sampler (EPA Station ID 00010348-I-2)	7
	4.5	Ryley So	chool Station TSP Hi-Vol Sampler (EPA Station ID 00010348-I-3)	7
	4.6	Highway	854 Lift Station TSP Hi-Vol Sampler (EPA Station ID 00010348-I-1)	7
	4.7	Highway	854 Lift Station PM ₁₀ Sampler (EPA Station ID 00010348-I-1)	7
5.	Amb	ient Air Mo	onitoring Results	7
	5.1	Meteoro	logical Data for Wind Speed and Direction	8
		5.1.1 5.1.2	Facility Meteorological Station Data Verification and Validation and Uptime (EPA Station ID 00010348-C-1)	8 tion
		5.1.3	ID 00010348-C-2)Ryley School Station Data Verification and Validation and Uptime (EPA Station ID 00010348-C-3)	
	5.2	TSP Cor	ncentrations	9
		5.2.1 5.2.2 5.2.3	Facility Site Station (EPA Station ID 00010348-I-2)	9
	5.3	PM ₁₀ Co	ncentrations	9
		5.3.1	Highway 854 Lift Station (EPA Station ID 00010348-I-1)	10
	5.4	VOC and	d TNMOC Concentrations	10
		5.4.1	Highway 854 Lift Station (EPA Station ID 00010348-I-1)	10
	5.5	Metal Co	oncentrations	10
		5.5.1 5.5.2 5.5.3	Facility Site Station (EPA Station ID 00010348-I-2)	10
	5.6	Dust Su	ppression	11
6	Cond	clusions		11

Table Index

Table 1	Average Wind Speed – Facility Meteorological Station
Table 2	Average Wind Speed – Facility Site Station
Table 3	Average Wind Speed – Ryley School Station
Table 4	Most Frequent Wind Direction – Facility Meteorological Station
Table 5	Most Frequent Wind Direction – Facility Site Station
Table 6	Most Frequent Wind Direction – Ryley School Station
Table 7	Frequency Distribution – Facility Meteorological Station
Table 8	Frequency Distribution – Facility Site Station
Table 9	Frequency Distribution – Ryley School Station
Table 10	TSP Concentrations – Facility Site Station
Table 11	TSP Concentrations – Ryley School Station
Table 12	TSP Concentrations – Highway 854 Lift Station
Table 13	PM ₁₀ Concentrations – Highway 854 Lift Station
Table 14	VOC and TNMOC – Highway 854 Lift Station
Table 15	TSP Metals Analysis – Facility Site Station
Table 16	TSP Metals Analysis – Ryley School Station
Table 17	TSP Metals Analysis – Highway 854 Lift Station
Table 18	PM ₁₀ Metals Analysis – Highway 854 Lift Station

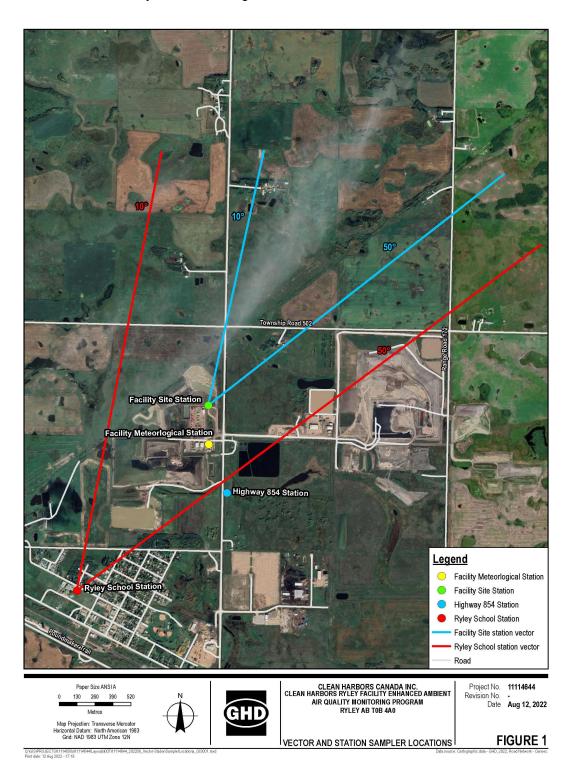
Figure Index

Figure 1 Vector and Sampler Station Locations

Appendices

Appendix A Meteorological Station Calibration Reports

Appendix B Sampling Field Sheets


Appendix C Wind Class Frequency Distribution Graphs and Wind Rose

Appendix D Chain of Custody Forms and Laboratory Analytical Reports

Appendix E December Quarterly Audit

1. Introduction

The Facility operates the following ambient air monitoring stations to assess ambient air quality at and around the Facility as shown in Figure 1.

- Upwind intermittent ambient air quality monitoring station, known as the Facility Site Station (EPA Station ID 00010348-I-2), located at 50114 Range Road 173, Ryley, Alberta (53°18'13.11"N and 112°25'5.81"W). At this location, a Tisch TE-5170V VFC High Volume TSP Sampler (TSP Hi-Vol Sampler) is located against the Facility perimeter fence, north of the vehicle staging road.
- 2. Downwind intermittent ambient air quality monitoring station, known as the Ryley School Station (EPA Station ID 00010348-I-3), located at 5211 52 Avenue, Ryley, Alberta (53°17'28.99"N and 112°25'55.81"W). At this location, a TSP Hi-Vol Sampler is located on the roof of the Ryley School.

For these two locations, samples are collected and analyzed for the following: total suspended particulate matter (TSP) (typically with diameter less than 35 microns (μ m)). Additionally, TSP samples that exceed 50 micrograms per cubic metre (50 μ g/m³) are analyzed for a target list of metals. The samplers are programmed to run for approximately 24-hours. All samples are collected for a total of 24-hours by intermittent sampling when the wind speed is greater than 5 km/hr and wind direction is blowing from the northeast towards the southwest.

- 3. Intermittent monitoring station, known as the Highway 854 Lift Station (EPA Station ID 00010348-I-1), located on Secondary Road 854, approximately 350 metres southeast of the Facility (Latitude: 53°17′52.66″N, Longitude: 112°24′57.87″W). At this location, a TSP Hi-Vol Sampler and a Partisol FRM 2000 PM₁0 Sampler (PM₁0 Sampler) will be located on the roof of the lift station. Samples are collected and analyzed for the following: TSP, particulate matter less than or equal to 10 μm in diameter (PM₁0), volatile organic compounds (VOCs), and total non-methane organic compounds (TNMOC). Additionally, TSP or PM₁0 samples that exceed 50 μg/m³ are analyzed for a target list of metals. Sampling is conducted once every 6-days for a 24-hour sampling period (midnight to midnight) as required by the Facility's Approval. The 6-day sampling frequency will be in alignment with the Government of Canada, National Air Pollution Surveillance Program (National Air Pollution Surveillance Program Canada.ca). To correlate PM₁0 data with TSP data, Clean Harbors will continue PM₁0 sampling at the station for a two-year period.
- 4. Continuous meteorological stations that collect wind speed and wind direction data are also located at the Facility Meteorological Station (EPA Station ID 00010348-C-1), Upwind Facility Site Station (EPA Station ID 00010348-C-2), and Downwind Ryley School Station (EPA Station ID 00010348-C-3). The anemometer equipment used to measure this data includes three R. M. Young 05305-10A Wind Monitor-Aqs.

All sampling and monitoring is conducted in accordance with the Facility's amended Approval (Approval No. 10348-03-01), the Alberta Air Monitoring Directive, 2016 (AMD), and in accordance with the following EPA standards:

- The Alberta Stack Sampling Code, Alberta Environment, 1995, as amended
- The Methods Manual for Chemical Analysis of Atmospheric Pollutants, Alberta Environment, 1993, as amended
- The Air Monitoring Directive, Alberta Environment, 1989, as amended

1.1 Contact Information

As required by AMD Chapter 9, Section 2, contact information is provided for the following Facility personnel and Contractors that assisted with the performance of the Facility's Air Monitoring Program.

	Contact Information
Name	Mr. Stan Yuha
Title	Plant Manager
Company	Clean Harbors
Responsibilities	Report Certifier/ETS Submitter
Address	PO Box 390, Ryley, AB T0B 4A0
Phone	780-663-2509
Email	yuha.stan@cleanharbors.com
Name	Mr. Todd Webb
Title	Laboratory Chemist
Company	Clean Harbors
Responsibilities	Station Field Operator and Field Sampler
Address	PO Box 390, Ryley, AB T0B 4A0
Phone	780-663-2513
Email	webb.todd@cleanharbors.com
Name	Mr. Pooya Shariaty
Title	Senior Air Quality Engineer/Project Manager
Company	GHD Limited
Responsibilities	Senior QA/QC
Address	3445-114 th Ave. SE, Suite 103 Calgary, AB
Phone	403-538-7479
Email	Pooya.shariaty@ghd.com
Name	Ms. Stepheney Davey
Title	Air Quality Engineer in Training
Company	GHD Limited
Responsibilities	Maintenance/Calibration Services/Report Preparer/ETS
Responsibilities	Submitter
Address	10250 101 Street NW, Suite 640, Edmonton, AB
Phone	780-229-3687
Email	Stepheney.davey@ghd.com
Company	Innotech
Responsibilities	Laboratory Analytical Services
Address	PO Bag 4000, Vegreville, Alberta
Phone	780-632-8211
Email	EAS.Results@albertainnovates.ca

2. Summary of Ambient Air Monitoring Activities

The following ambient air monitoring activities were conducted during the month of December 2023.

Activity	Completed	Date(s)
	(Y/N)	
	cility Meteorolo	gical Station
Wind Speed/Direction Sensor Calibration	N	June 30, 2023 ⁽¹⁾
Changes to the Wind Speed/Direction Sensor	N	-
Wind	- Facility Site	Station
Wind Speed/Direction Sensor Calibration	N	Anemometer Error ⁽²⁾
Changes to the Wind Speed/Direction Sensor	N	-
Wind	- Ryley School	Station
Wind Speed/Direction Sensor Calibration	Y	June 30, 2023
Changes to the Wind Speed/Direction Sensor	N	-
TSP	- Facility Site S	Station
TSP Hi-Vol Sampler Calibration	Υ	December 13, 2023
Changes to the TSP Hi-Vol Sampler	N	-
TSP Samples Collected	Y	December 1, 2023 – January 1, 2024
TSP Metal Analysis Conducted	Υ	December 1, 2023 – January 1, 2024
TSP Sampler Maintenance	Y	December 1, 2023
Activities		December 13, 2023
TSP -	- Ryley School	Station
TSP Hi-Vol Sampler Calibration	Y	December 13, 2023
Changes to the TSP Hi-Vol Sampler	N	-
TSP Samples Collected	Y	December 1, 2023 – January 1, 2024
TSP Metal Analysis Conducted	Y	December 1, 2023 – January 1, 2024
TSP Sampler Maintenance	Υ	December 1, 2023
Activities		December 13, 2023
-		hway 854 Lift Station
TSP Hi-Vol Sampler Calibration	Y	December 13, 2023
PM ₁₀ Sampler Calibration	Y	December 13, 2023
Changes to the TSP Hi-Vol Sampler	N	-
Changes to the PM ₁₀ Sampling Station	N	-
		December 2, 2023
T00 0 1 0 11 1 1	,,	December 8, 2023
TSP Samples Collected	Y	December 14, 2023
		December 20, 2023
	\	December 26, 2023
PM ₁₀ Samples Collected	Y	December 2, 2023

Activity	Completed (Y/N)	Date(s)
		December 8, 2023
		December 14, 2023
		December 20, 2023
		December 26, 2023
		December 2, 2023
VOC and TNMOC Samples		December 8, 2023
VOC and TNMOC Samples Collected	Y	December 14, 2023
Collected		December 20, 2023
		December 26, 2023
TSP Metal Analysis Conducted	Y	December 2, 2023
PM ₁₀ Metal Analysis Conducted	Y	December 2, 2023
		December 2, 2023
		December 8, 2023
TSP Sampler Maintenance	Y	December 13, 2023
Activities	T	December 14, 2023
		December 20, 2023
		December 26, 2023
		December 2, 2023
		December 8, 2023
PM ₁₀ Sampler Maintenance	Y	December 13, 2023
Activities	ľ	December 14, 2023
		December 20, 2023
		December 26, 2023
Dust Suppression Activities	N	-

Note: (1) The wind speed/direction sensor on the Facility Site Meteorological Station was checked for calibration on June 30, 2023 and was shown to be within the allowable tolerances and was then re-installed after calibration.

3. Summary of Electronic Transfer System (ETS) Submittals

In addition to the December 2023 monthly report, the following summarized items were submitted to the ETS:

3.1 AMD XML Schema

An XML formatted Schema file was submitted to the Alberta EPA via the ETS portal. The XML Schema file contains the results from:

- Wind
 - Facility Meteorological Station EPA Station ID 00010348-C-1.

⁽²⁾ Instrument is not currently reporting due to an emometer program corruption. The instrument was calibrated prior to install in the Fall of 2014 for voluntary reporting.

- Facility Site Station EPA Station ID 00010348-C-2.
- Ryley School Station EPA Station ID 00010348-C-3.

TSP

- Facility Site Station EPA Station ID 00010348-I-2.
- Ryley School Station EPA Station ID 00010348-I-3.
- Highway 854 Lift Station EPA Station ID 00010348-I-1.
- PM₁₀
 - Highway 854 Lift Station EPA Station ID 00010348-I-1.

3.2 Ambient Air Monitoring Program Laboratory Reports

One laboratory report in PDF file format was submitted to the Alberta EPA via the ETS portal. The PDF file contains the results from EPA Station ID 00010348-I-1, EPA Station ID 00010348-I-2, and EPA Station ID 00010348-I-3.

3.3 Ambient Air Monitoring Program Calibration Reports

One calibration report in PDF file format was submitted to the Alberta EPA via the ETS portal. The PDF file contains the results from EPA Station ID 00010348-C-1.

4. Calibration and Operation & Maintenance (O&M) Activities

4.1 Facility Meteorological Station for Wind Speed and Direction (EPA Station ID 00010348-C-1)

The Facility Meteorological Station was taken down and calibrated on June 30, 2023. The station was shown to be within all allowable tolerances, as required by the manufacturer, and was then reinstalled after calibration. Provided in Appendix A is the calibration report and record of installation.

4.2 Facility Site Station for Wind Speed and Direction (EPA Station ID 00010348-C-2)

The Facility Site Station was last calibrated upon installation. When installed, the station was shown to be within all allowable tolerances, as required by the manufacturer.

During May 2023, Clean Harbors chose to swap the Ryley School Station (EPA Station ID 00010348-C-3) anemometer with the Facility Site Station (EPA Station ID 00010348-C-2) anemometer due to EPA Station ID 00010348-C-3 anemometer program corruption. Per Approval No. 10348-03-01, Clean Harbors is only required to report "a minimum of one (1) meteorological station in each of the Ryley School and Facility Site intermittent ambient air quality monitoring stations" thus, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station (Station ID 00010348-C-1).

4.3 Ryley School Station for Wind Speed and Direction (EPA Station ID 00010348-C-3)

The Ryley School Station was taken down and calibrated on June 30, 2023. The station was shown to be within all allowable tolerances, as required by the manufacturer, and was then re-installed after calibration. Provided in Appendix A is the calibration report.

4.4 Facility Site Station TSP Hi-Vol Sampler (EPA Station ID 00010348-I-2)

The sampling activities for the Tisch TE-5170V VFC High Volume TSP Sampler (TSP Hi-Vol Sampler) are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on December 13, 2023.

4.5 Ryley School Station TSP Hi-Vol Sampler (EPA Station ID 00010348-I-3)

The sampling activities for the TSP Hi-Vol Sampler are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on December 13, 2023.

4.6 Highway 854 Lift Station TSP Hi-Vol Sampler (EPA Station ID 00010348-I-1)

The sampling activities for the TSP Hi-Vol Sampler are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on December 13, 2023.

4.7 Highway 854 Lift Station PM₁₀ Sampler (EPA Station ID 00010348-I-1)

Maintenance activities for the Thermo Scientific[™] Partisol 2000i-Federal Reference Method (FRM) PM₁₀ Sampler included inlet cleaning and leak checks that were conducted before each sampling event in December 2023. The pre-sampling maintenance activities are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on December 13, 2023.

5. Ambient Air Monitoring Results

The following section presents the results from the ambient air monitoring program for the Facility Meteorological Station (EPA Station ID 00010348-C-1), Facility Site Station (EPA Station

ID 00010348-C-2), Ryley School Station (EPA Station ID 00010348-C-3), Highway 854 Lift Station (EPA Station ID 00010348-I-1), Facility Site Station (EPA Station ID 00010348-I-2), and Ryley School Station (EPA Station ID 00010348-I-3) conducted in June 2023. Where applicable, comparisons were made to Alberta Ambient Air Quality Objectives (AAAQO) for parameters that had 24-hour average objectives. These parameters are TSP and some of the VOCs including o,m,p-xylene, hexane, and toluene. For the parameter objectives with averaging periods other than 24-hours, Section 7.1.2 of the Air Quality Model Guideline was used to covert the measured values to the corresponding AAAQO averaging periods prior to comparison. For all other parameters, AAAQO have not been established.

5.1 Meteorological Data for Wind Speed and Direction

In accordance with the Approval and the AMD, the Facility is required to collect wind speed and directional data continuously for the Facility Meteorological Station, Facility Site Station, and Ryley School Station. Tables 1 - 3 present the hourly and 24-hour average wind speeds, Tables 4 - 6 present the hourly and 24-hour most frequent wind direction data (degrees from north), and Tables 7 - 9 present the Wind Class Frequency Distribution for December 2023 from the Facility Meteorological Station, Facility Site Station, and Ryley School Station, respectively. Appendix C provides graphical representations of the Wind Class Frequency Distribution and the Wind Roses based on Tables 1 – 9.

5.1.1 Facility Meteorological Station Data Verification and Validation and Uptime (EPA Station ID 00010348-C-1)

Based on the verification and validation process conducted for the meteorological data that was collected in December 2023, it was determined that 100 percent of the data is valid, which represents 100 percent uptime of the meteorological station. This is above the 90 percent uptime limit required for compliance, as per the Approval.

5.1.2 Facility Site Station Data Verification and Validation and Uptime (EPA Station ID 00010348-C-2)

As noted above, Clean Harbors chose to swap the Ryley School Station (EPA Station ID 00010348-C-3) anemometer with the Facility Site Station (EPA Station ID 00010348-C-2) anemometer due to EPA Station ID 00010348-C-3 anemometer program corruption. Per Approval No. 10348-03-01, Clean Harbors is only required to report "a minimum of one (1) meteorological station in each of the Ryley School and Facility Site intermittent ambient air quality monitoring stations" thus, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station (Station ID 00010348-C-1).

5.1.3 Ryley School Station Data Verification and Validation and Uptime (EPA Station ID 00010348-C-3)

Based on the verification and validation process conducted for the meteorological data that was collected in December 2023, it was determined that 100 percent of the data is valid, which represents 100 percent uptime of the meteorological station. This is above the 90 percent uptime limit required for compliance, as per the Approval.

5.2 TSP Concentrations

AAAQO are specified for TSP at 100 μ g/m³ (24-hour averaging period). In accordance with the Facility's Approval, TSP samples that exceed 50 μ g/m³ are analyzed for a target list of metals. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.2.1 Facility Site Station (EPA Station ID 00010348-I-2)

Table 10 presents the results of the sampling conducted for TSP from the Facility Site Station. The TSP sample collected in December 2023 was shown to have an elevated TSP concentration of 189.374 $\mu g/m^3$, which is above the 100 $\mu g/m^3$ AAAQO threshold. The Facility Site Station is downwind from other potential sources in the area (upwind of the Facility sources) and as a result there is likely other contributing factors outside of the Facility causing this exceedance. The Facility Site Station is used as a baseline of the background air quality, and the Ryley School Station and Highway Lift Station are compared to analyze the Facility's effect on the air quality. The TSP exceedance for December 2023 is likely a result of the background air quality and not related to the Facility. As such, no contravention form was submitted due to this exceedance.

5.2.2 Ryley School Station (EPA Station ID 00010348-I-3)

Table 11 presents the results of the sampling conducted for TSP from the Ryley School Station. The TSP sample collected in December 2023 was shown to have an elevated TSP concentration of 161.860 μ g/m³, which is above the 100 μ g/m³ AAAQO threshold. It should be noted that the Ryley School Station is located downwind of the Facility Site Station and the Ryley School Station only collects samples when the wind direction is blowing from northeast to the southwest. Therefore, the exceedance at the Ryley School station is likely due to the high baseline concentration measured at the Facility Site Station which is likely a result of other contributing factors outside of the Facility. The TSP exceedance for December 2023 is likely a result of the background air quality and not related to the Facility. As such, no contravention form was submitted due to this exceedance.

5.2.3 Highway 854 Lift Station (EPA Station ID 00010348-I-1)

Table 12 presents the results of the sampling conducted for TSP from the Highway 854 Lift Station. None of the samples analyzed in December 2023 were shown to have elevated TSP concentration above the 100 μ g/m³ AAAQO threshold.

5.3 PM₁₀ Concentrations

AAAQO are specified for TSP at 100 $\mu g/m^3$ and Particulate Matter ≤ 2.5 microns (PM_{2.5}) at 29 $\mu g/m^3$ (24-hour averaging period). There is currently no AAAQO specified for PM₁₀ for a 24-hour averaging period in Alberta. To correlate PM₁₀ data with TSP data, Clean Harbors will continue PM₁₀ sampling at the station for a two-year period. In accordance with the Facility's Approval, PM₁₀ samples that exceed 50 $\mu g/m^3$ are analyzed for a target list of metals. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.3.1 Highway 854 Lift Station (EPA Station ID 00010348-I-1)

Table 13 presents the results of the sampling conducted for PM₁₀.

5.4 VOC and TNMOC Concentrations

There are three VOC parameters that have corresponding AAAQO with 24-hour averaging periods including o,p,m-xylene, hexane and toluene. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.4.1 Highway 854 Lift Station (EPA Station ID 00010348-I-1)

Table 14 presents the VOC and TNMOC concentrations measured in December 2023. There were no exceedances for the parameters with AAAQO in December 2023.

5.5 Metal Concentrations

In accordance with the Facility's Approval, if collected TSP or PM_{10} samples show exceedances over 50 μ g/m³ after gravimetric analysis, a subsequent filter particulate analysis is done using inductively coupled plasma mass spectroscopy (ICP-MS) for 21 trace elements. There are four parameters that have corresponding AAAQO with 1-hour averaging periods including arsenic, chromium, lead, nickel, and manganese. The sample results were converted to a 1-hour averaging period for comparison with the sample AAAQO. If metal analysis was conducted, Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.5.1 Facility Site Station (EPA Station ID 00010348-I-2)

The TSP sample collected in December 2023 was above $50 \mu g/m^3$ and as such, analysis for metals was conducted on the sample. Facility Test #109 (HV-23-02-17) was shown to have an elevated TSP concentration of $189.374 \mu g/m^3$, which is over the $50 \mu g/m^3$ threshold. This sample was sent for additional analysis and the results for this test can be found in Table 15 of this report. There were no exceedances for the parameters with AAAQO in December 2023.

5.5.2 Ryley School Station (EPA Station ID 00010348-I-3)

The TSP sample collected in December 2023 was above $50 \, \mu g/m^3$ and as such, analysis for metals was conducted on the sample. School Test #109 (HV-23-02-18) was shown to have an elevated TSP concentration of $161.860 \, \mu g/m^3$, which is over the $50 \, \mu g/m^3$ threshold. This sample was sent for additional analysis and the results for this test can be found in Table 16 of this report. There were no exceedances for the parameters with AAAQO in December 2023.

5.5.3 Highway 854 Lift Station (EPA Station ID 00010348-I-1)

TSP

One of the five TSP samples analyzed in December 2023 were above 50 μ g/m³ and as such, analysis for metals was conducted on the samples. Facility Test #875 (HVF-23-10-03) was shown to have an elevated TSP concentration of 55.433 μ g/m³, which is over the 50 μ g/m³ threshold. This

sample was sent for additional analysis and the results for Test #875 can be found in Table 17 of this report. There were no exceedances for the parameters with AAAQO in December 2023.

PM₁₀

None of the PM_{10} samples analyzed in December 2023 were above the 50 $\mu g/m^3$. The PM_{10} concentration measured for Facility Test #875 (AT85238) was less than the 50 threshold, 29.836 $\mu g/m^3$; however, as the TSP concentration for this sample was above the 50 $\mu g/m^3$ threshold (as noted above), the corresponding PM_{10} sample were sent for analysis. The results for Test #875 can be found in Table 18 of this report. There were no exceedances for the parameters with AAAQO in December 2023.

The remainder of the TSP and PM₁₀ samples collected in December 2023 were below 50 μ g/m³ and as such analysis for metals was not conducted on those samples.

5.6 Dust Suppression

There were no dust suppression activities, which include using leachate spread on the surface of the active landfill, conducted during December 2023.

6. Conclusions

The following summarizes the Ambient Air Monitoring Program that was conducted in December 2023.

- 1 During December 2023, the Facility Meteorological Station (EPA Station ID 00010348-C-1) operated at 100 percent uptime. Based on the data verification and validation procedure conducted, this is in compliance with the minimum 90 percent uptime required by the AMD.
- 2 During December 2023, the continuous Facility Site wind Station was not operational. Per the approval, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station.
- 3 During December 2023, the continuous Ryley School wind Station operated at 100 percent uptime. Based on the data verification and validation procedure conducted, this is in compliance with the minimum 90 percent uptime required by the AMD.
- 4 The TSP concentration measured at the intermittent Facility Site Station from December 1, 2023 to January 1, 2024 was 189.374 μg/m³. The AAAQO exceedance for this month is likely a result of the background air quality and not related to the Facility.
- 5 The TSP concentration measured at the intermittent Ryley School Station from December 1, 2023 to January 1, 2024 was 161.860 μg/m³. The AAAQO exceedance for this month is likely a result of the background air quality and not related to the Facility.
- The TSP concentrations measured at the intermittent Highway 854 Lift Station (EPA Station ID 00010348-I-1) on December 2, December 8, December 14, December 20, and December 26 were 55.433 μ g/m³, 17.391 μ g/m³, 16.643 μ g/m³, 12.748 μ g/m³, and 13.175 μ g/m³, respectively.

- 7 The PM₁₀ concentrations measured at the intermittent Highway 854 Lift Station (EPA Station ID 00010348-I-1) on December 2, December 8, December 14, December 20, and December 26 were 29.836 μg/m³, 7.390 μg/m³, 4.232 μg/m³, 6.352 μg/m³, and 2.893 μg/m³ respectively.
- 8 Based on the VOC and TMNOC results measured at the intermittent Highway 854 Lift Station (EPA Station ID 00010348-I-1), no exceedances were detected for parameters with applicable AAAQO, which included o,m,p-xylene, hexane and toluene. There are no applicable AAAQO for other parameters that were monitored in December 2023.
- 9 The TSP concentration measured for Facility Test #109 (HV-23-02-17), conducted from December 1, 2023 to January 1, 2024, was above the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters were below any applicable AAAQO (arsenic, chromium, lead, nickel, and manganese).
- 10 The TSP concentration measured for School Test #109 (HV-23-02-18), conducted from December 1, 2023 to January 1, 2024, was above the 50 μg/m3 threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters were below any applicable AAAQO (arsenic, chromium, lead, nickel, and manganese).
- 11 The TSP concentrations measured for Facility Test #875 (HVF-23-10-03) was over the 50 μg/m3 threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters for Test #875 were below any applicable AAAQO (arsenic, chromium, lead, nickel, and manganese).
- 12 None of the PM10 concentrations measured were over the 50 μ g/m3 threshold outlined in the Facility's approval. The PM10 concentration measured for Facility Test #875 (AT85238) was less than the 50 μ g/m³ threshold; however, as the TSP concentration for this sample was above the 50 μ g/m³ threshold, the corresponding PM₁₀ sample was sent for additional analysis. The results of this test showed that all parameters for Test #875 were below any applicable AAAQO (arsenic, chromium, lead, nickel, and manganese).

Clean Harbors will continue to perform their Facility's Ambient Air Monitoring Program in accordance with their Approval and the AMD and evaluate the data to determine impacts on the ambient air quality.

7. Certification

Per the requirements of AMD, Chapter 9, Section 2.3, the following certification is provided for the December 2023 Ambient Air Monitoring Report.

"I certify that I have reviewed and verified this report and that the information is complete, accurate and representative of the monitoring results, reporting timeframe and the specified analysis, summarization and reporting requirements."

Stan Yuha

Plant Manager/Report Certifier

Stan Yuha

END OF REPORT

Tables

TABLE 1

Average Wind Speed (metres/second)
EPA Station ID 00010348-C-1
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
December 2023

Day/Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 1 2.8 2.8 2.2 1.8 1.7 2.6 1.9 3.1 3.4 3.4 3.6 4.7 5.1 2 1.8 1.9 2.5 3.3 4.6 2.1 3.0 2.4 2.4 2.5 3.7 2.5 2.7 3 2.9 2.4 2.7 3.7 3.3 2.4 3.5 5.3 5.6 5.5 3.2 2.6 3.7 4 2.1 1.7 2.5 3.8 4.8 5.1 5.1 4.9 5.6 6.1 5.3 5.3 4.6 5 3.3 3.4 4.0 3.8 3.6 4.4 5.9 4.5 4.9 4.2 3.4 2.0 2.9 6 4.4 6.1 6.3 5.5 3.2 1.7 2.0 2.2 <th>13 14 15 16 17 18 19 20 21 22 23 4.6 4.4 3.5 1.2 0.9 1.7 2.0 1.4 2.3 2.4 3.3 2.7 2.1 2.5 1.8 1.6 1.1 0.7 1.5 2.6 2.3 3.3 4.5 4.9 5.3 4.6 4.0 3.3 3.7 3.9 2.3 3.8 3.2 4.3 3.8 2.7 3.9 3.0 3.1 2.2 2.5 3.1 3.4 3.0 3.1 4.3 3.3 2.9 3.3 3.2 3.1 4.1 4.0 3.5 3.3 1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9</th>	13 14 15 16 17 18 19 20 21 22 23 4.6 4.4 3.5 1.2 0.9 1.7 2.0 1.4 2.3 2.4 3.3 2.7 2.1 2.5 1.8 1.6 1.1 0.7 1.5 2.6 2.3 3.3 4.5 4.9 5.3 4.6 4.0 3.3 3.7 3.9 2.3 3.8 3.2 4.3 3.8 2.7 3.9 3.0 3.1 2.2 2.5 3.1 3.4 3.0 3.1 4.3 3.3 2.9 3.3 3.2 3.1 4.1 4.0 3.5 3.3 1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9
2 1.8 1.9 2.5 3.3 4.6 2.1 3.0 2.4 2.4 2.5 3.7 2.5 2.7 3 2.9 2.4 2.7 3.7 3.3 2.4 3.5 5.3 5.6 5.5 3.2 2.6 3.7 4 2.1 1.7 2.5 3.8 4.8 5.1 5.1 4.9 5.6 6.1 5.3 5.3 4.6 5 3.3 3.4 4.0 3.8 3.6 4.4 5.9 4.5 4.9 4.2 3.4 2.0 2.9 6 4.4 6.1 6.3 5.5 3.2 1.7 2.0 2.2 2.2 1.7 0.8 0.4 0.6 7 1.7 2.3 1.4 2.3 2.8 3.4 3.9 5.0 5.6 5.0 4.2 3.3 2.8 8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	2.7 2.1 2.5 1.8 1.6 1.1 0.7 1.5 2.6 2.3 3.3 4.5 4.9 5.3 4.6 4.0 3.3 3.7 3.9 2.3 3.8 3.2 4.3 3.8 2.7 3.9 3.0 3.1 2.2 2.5 3.1 3.4 3.0 3.1 4.3 3.3 2.9 3.3 3.2 3.1 4.1 4.0 3.5 3.3 1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3
3 2.9 2.4 2.7 3.7 3.3 2.4 3.5 5.3 5.6 5.5 3.2 2.6 3.7 4 2.1 1.7 2.5 3.8 4.8 5.1 5.1 4.9 5.6 6.1 5.3 5.3 4.6 5 3.3 3.4 4.0 3.8 3.6 4.4 5.9 4.5 4.9 4.2 3.4 2.0 2.9 6 4.4 6.1 6.3 5.5 3.2 1.7 2.0 2.2 2.2 1.7 0.8 0.4 0.6 7 1.7 2.3 1.4 2.3 2.8 3.4 3.9 5.0 5.6 5.0 4.2 3.3 2.8 8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	4.5 4.9 5.3 4.6 4.0 3.3 3.7 3.9 2.3 3.8 3.2 4.3 3.8 2.7 3.9 3.0 3.1 2.2 2.5 3.1 3.4 3.0 3.1 4.3 3.3 2.9 3.3 3.2 3.1 4.1 4.0 3.5 3.3 1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
4 2.1 1.7 2.5 3.8 4.8 5.1 5.1 4.9 5.6 6.1 5.3 5.3 4.6 5 3.3 3.4 4.0 3.8 3.6 4.4 5.9 4.5 4.9 4.2 3.4 2.0 2.9 6 4.4 6.1 6.3 5.5 3.2 1.7 2.0 2.2 2.2 1.7 0.8 0.4 0.6 7 1.7 2.3 1.4 2.3 2.8 3.4 3.9 5.0 5.6 5.0 4.2 3.3 2.8 8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	4.3 3.8 2.7 3.9 3.0 3.1 2.2 2.5 3.1 3.4 3.0 3.1 4.3 3.3 2.9 3.3 3.2 3.1 4.1 4.0 3.5 3.3 1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
5 3.3 3.4 4.0 3.8 3.6 4.4 5.9 4.5 4.9 4.2 3.4 2.0 2.9 6 4.4 6.1 6.3 5.5 3.2 1.7 2.0 2.2 2.2 1.7 0.8 0.4 0.6 7 1.7 2.3 1.4 2.3 2.8 3.4 3.9 5.0 5.6 5.0 4.2 3.3 2.8 8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	3.1 4.3 3.3 2.9 3.3 3.2 3.1 4.1 4.0 3.5 3.3 1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
6 4.4 6.1 6.3 5.5 3.2 1.7 2.0 2.2 2.2 1.7 0.8 0.4 0.6 7 1.7 2.3 1.4 2.3 2.8 3.4 3.9 5.0 5.6 5.0 4.2 3.3 2.8 8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	1.8 1.6 1.4 1.2 1.0 1.6 1.7 0.8 1.0 1.3 1.4 2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
7 1.7 2.3 1.4 2.3 2.8 3.4 3.9 5.0 5.6 5.0 4.2 3.3 2.8 8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	2.5 2.7 3.9 3.1 3.0 3.2 3.9 3.9 4.4 4.2 3.2 2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
8 3.7 4.2 4.7 4.6 4.3 4.1 4.1 3.6 3.4 3.5 3.3 1.4 1.7	2.7 1.9 2.7 3.9 4.1 5.0 5.3 4.1 3.9 3.9 4.6 3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
	3.7 2.9 2.1 3.2 4.2 4.9 5.2 4.7 4.4 4.7 4.5 5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
	5.4 4.6 4.9 4.9 4.3 2.3 3.1 4.0 4.4 4.2 3.9
9 3.6 5.2 5.1 5.4 5.9 6.1 6.9 6.5 6.1 6.4 6.2 6.0 4.5	
10 2.6 2.5 2.6 2.7 3.1 3.3 3.2 2.2 5.4 4.6 4.2 5.1 6.0	16 10 20 26 20 22 42 45 42 44 52
11 5.1 4.4 3.6 5.3 5.5 8.0 6.9 7.2 6.7 4.4 3.6 4.0 2.9	
12 4.0 5.4 5.7 3.8 2.1 2.3 4.7 5.9 6.9 5.9 6.2 6.1 5.9	5.9 6.1 6.0 4.8 4.4 6.3 4.7 4.9 5.2 3.3 2.6
13 3.5 4.6 4.4 4.5 5.1 4.9 4.6 4.0 5.3 3.8 2.9 3.3 3.6	3.5 4.1 4.6 4.4 4.6 3.1 2.6 3.3 3.5 4.7 5.3
14 5.6 5.2 4.2 3.1 4.1 3.9 3.5 4.0 4.6 3.8 3.7 2.9 2.6	2.3 2.7 2.7 1.6 3.0 3.1 3.3 2.4 1.1 2.1 2.7
15 2.9 1.6 2.0 3.6 2.8 4.0 4.4 3.6 4.1 4.0 3.9 5.4 5.5	5.9 5.6 5.6 6.3 5.8 5.7 5.0 5.5 5.8 3.0 2.7
16 3.2 3.1 3.6 3.0 3.6 4.3 5.4 5.7 5.4 4.0 3.5 3.4 3.5	2.7 2.3 3.2 4.1 4.2 4.0 4.3 4.3 5.2 7.6 8.5
17 11.4 9.0 8.1 6.6 5.7 5.4 5.5 4.3 5.0 7.1 5.9 5.4 4.1	3.1 3.3 3.2 3.9 3.5 3.4 3.9 3.7 2.9 2.1 2.4
18 3.7 4.7 5.0 7.5 7.1 6.7 7.0 7.8 6.8 4.5 4.7 4.5 3.3	2.7 2.1 1.9 0.4 0.9 2.6 2.2 1.2 2.2 1.8 2.2
19 1.7 1.1 0.9 1.6 1.6 2.8 1.8 2.8 3.1 3.7 4.1 4.8 5.6	6.1 5.8 6.4 6.6 7.2 7.2 7.1 7.0 7.3 7.3 6.3
20 4.7 4.9 6.2 5.4 5.0 4.1 3.3 3.2 2.3 1.9 3.1 3.5 2.9 21 3.3 3.6 4.8 3.8 2.1 1.9 2.2 3.0 3.3 2.6 3.7 3.9 3.8	1.6 0.9 2.1 3.4 2.5 2.3 2.4 1.7 2.3 2.3 2.9 5.1 5.2 4.9 5.7 4.6 4.5 5.1 5.1 4.2 3.5 3.8
23 6.4 7.4 8.5 7.4 9.0 9.4 9.2 8.7 8.6 8.2 6.2 5.1 4.7 24 6.7 6.6 6.7 5.4 5.1 4.3 4.8 4.7 4.1 3.0 2.9 4.3 4.0	6.5 6.6 5.7 3.9 4.1 4.4 4.3 4.2 4.5 5.4 6.1 4.5 4.3 4.1 3.2 2.6 4.0 5.0 4.9 3.1 3.0 2.6
25 2.1 2.3 2.6 2.1 2.6 1.9 1.8 3.1 2.3 2.9 3.4 2.2 1.1	0.6 1.0 2.2 3.2 3.0 2.2 3.3 3.8 3.0 3.7 4.1
26 4.4 3.8 4.1 3.7 4.3 4.0 4.3 5.4 4.7 4.6 4.5 3.1 3.9	3.5 1.9 1.3 1.5 5.3 4.0 5.2 4.3 4.4 6.2 5.4
27 5.3 6.5 6.4 2.4 1.1 1.6 2.7 1.7 2.1 3.1 3.6 4.2 5.1	5.8 5.3 4.7 5.9 5.9 6.2 6.6 6.1 6.2 5.6 6.4
28 5.4 5.1 4.7 3.6 2.3 1.0 1.1 3.0 3.5 3.4 1.4 0.8 2.1	3.6 3.5 3.6 4.7 5.3 5.4 6.4 7.3 7.2 6.5 5.1
29 2.6 2.0 1.9 3.5 4.1 2.7 1.6 1.9 1.5 1.7 1.3 0.6 1.7	1.8
30 2.8 2.8 3.6 3.2 4.0 3.9 3.9 4.4 4.2 5.5 6.0 5.4 5.8	6.2 6.6 7.3 6.9 5.7 5.9 4.4 4.0 5.0 5.1 3.2
31 1.9 2.5 3.2 3.2 2.4 3.0 4.0 1.6 1.5 1.2 1.0 0.9 2.5	0.7 0.6 0.4 0.4 1.4 1.7 3.7 4.0 3.1 2.7 3.1

TABLE 2

Average Wind Speed (metres/second)

EPA Station ID 00010348-C-2

Clean Harbors Canada, Inc.

Monthly Ambient Air Monitoring Report

December 2023

								Ry	ley Wind	Speed	Data (ı	m/s) - Mo	onth of	Decemb	er 2023									
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
18	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
23	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
24	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
25	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
26	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
27	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
28	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
29	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
30	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
31	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								

Notes:

- (X) - Equipment Malfunction

TABLE 3

Average Wind Speed (metres/second) EPA Station ID 00010348-C-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

								Ryl	ey Wind	Speed	Data (n	n/s) - Mo	onth of E	Decemb	er 2023									$\overline{}$
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	2.7	2.0	2.4	1.0	1.3	1.9	1.1	2.2	3.1	2.8	3.4	4.1	4.4	4.1	3.7	3.0	1.1	0.6	0.8	0.8	0.6	0.6	0.6	0.7
2	0.4	0.9	1.2	1.3	1.5	1.4	1.8	1.6	1.6	1.5	2.1	1.6	2.0	1.9	1.4	2.1	1.3	8.0	0.2	0.4	0.7	0.9	0.7	1.7
3	1.2	1.0	0.9	1.5	1.0	0.5	0.7	8.0	1.2	1.4	1.3	1.8	3.4	4.0	3.9	4.5	3.9	3.3	2.9	3.4	2.1	1.3	1.9	1.6
4	1.0	0.2	0.2	0.4	1.1	1.0	1.3	1.5	1.4	1.8	1.3	1.6	1.5	1.1	1.2	1.3	1.4	1.4	2.7	1.8	1.4	1.9	2.6	2.0
5	2.2	2.8	3.1	3.3	3.1	4.4	4.4	4.1	3.7	3.1	3.1	1.3	1.3	0.9	1.0	1.5	0.9	1.4	1.1	0.9	8.0	8.0	0.7	8.0
6	1.5	1.3	1.2	1.3	0.6	0.5	8.0	1.0	0.5	0.3	0.4	0.1	0.3	1.0	1.4	1.1	1.0	0.6	8.0	1.1	0.4	0.4	0.7	0.7
7	1.5	1.8	8.0	1.0	0.9	1.5	1.5	2.3	2.1	0.5	0.0	0.0	0.4	1.4	2.0	2.3	1.8	0.9	1.1	1.5	0.9	1.6	1.5	0.1
8	8.0	0.6	0.7	0.6	0.7	0.9	0.7	0.6	0.3	0.7	0.1	0.3	0.4	8.0	0.3	0.3	0.4	0.5	0.5	0.7	0.7	0.7	0.6	1.2
9	8.0	1.1	1.1	8.0	1.0	1.1	1.4	1.1	1.0	1.1	1.3	1.2	1.3	1.5	1.6	1.8	2.8	3.5	4.1	4.5	4.4	3.8	3.8	3.4
10	2.0	1.7	1.7	1.2	1.1	0.6	0.6	1.0	1.8	2.2	2.4	1.8	1.5	1.4	1.0	1.4	1.8	1.7	1.0	1.2	1.0	1.4	2.5	2.3
11	1.5	1.6	1.6	3.4	3.5	4.4	4.1	3.8	3.7	2.0	1.9	1.6	1.4	0.7	1.5	2.0	2.3	2.4	2.9	2.8	2.9	3.7	3.6	3.3
12	2.6	1.5	1.4	0.7	0.7	0.5	8.0	1.1	1.6	1.8	1.8	2.0	3.0	2.8	2.8	2.4	3.0	3.9	4.2	3.2	4.0	3.7	1.3	2.1
13	2.1	2.9	2.2	2.3	2.4	2.9	2.2	3.0	3.9	2.6	2.4	1.6	2.4	2.0	2.3	4.5	3.8	3.6	1.8	1.8	1.7	1.4	1.0	1.5
14	2.2	1.3	1.0	0.6	1.3	2.0	1.2	1.5	2.6	2.3	1.8	1.4	0.9	0.4	0.3	0.4	0.1	0.6	1.8	2.1	1.5	0.9	1.1	2.3
15	1.5	1.3	1.5	2.6	1.7	3.1	3.8	3.2	3.4	3.3	3.8	5.0	5.1	4.5	4.8	4.5	5.4	5.4	5.1	3.5	3.6	3.6	3.1	2.4
16	2.4	2.1	1.4	1.5	1.3	2.6	3.2	3.6	3.4	2.4	1.9	1.9	1.9	1.5	1.1	1.2	1.3	1.4	1.5	1.6	1.3	1.7	3.4	5.5
17	5.9	5.1	4.3	4.0	3.5	3.4	3.1	1.2	1.2	1.5	1.4	1.6	1.8	2.5	3.0	3.4	3.3	2.8	3.9	2.7	2.8	2.4	2.1	2.5
18	2.3	1.5	1.9	1.7	1.6	1.4	1.6	1.9	1.4	1.3	1.0	1.1	1.2	1.5	1.1	0.1	0.1	0.1	1.1	1.3	0.4	0.3	0.5	0.2
19	0.3	0.2	0.2	0.4	0.7	1.5	1.2	1.7	2.3	2.4	2.8	4.1	4.6	4.4	4.3	5.4	5.2	5.3	5.3	5.4	5.1	5.7	5.3	4.5
20	3.3	4.1	4.8	4.1	3.7	3.3	2.5	2.4	1.6	1.6	2.5	2.8	2.4	0.8	0.9	1.7	2.5	1.7	2.2	2.0	1.5	1.5	1.3	1.1
21	1.5	1.8	2.6	2.0	0.6	0.7	0.7	8.0	8.0	1.4	2.3	2.8	3.3	3.9	4.3	4.7	5.4	4.2	4.1	4.2	4.7	3.5	3.2	2.9
22	2.5	2.8	2.6	2.6	2.3	2.5	2.4	2.7	3.6	3.4	2.4	2.3	2.0	2.6	3.0	2.0	1.3	1.3	1.7	2.4	1.7	2.5	4.3	4.2
23	3.6	4.6	4.6	4.4	5.9	6.0	6.5	6.1	5.5	5.1	3.7	2.9	2.8	4.2	4.5	3.4	2.3	1.9	2.0	2.1	1.7	1.0	0.6	0.6
24	1.1	1.6	1.1	1.3	1.6	1.8	1.6	1.8	1.9	2.4	2.5	3.6	3.7	4.1	3.5	2.9	2.0	2.4	3.3	3.2	3.0	2.5	2.4	1.6
25	1.9	2.5	1.7	1.1	1.2	0.7	0.6	0.6	0.6	0.9	0.9	0.7	0.7	0.5	0.9	1.9	2.6	2.4	1.5	2.4	3.1	1.8	2.7	2.5
26	2.8	2.5	2.9	2.9	3.2	3.5	3.7	4.6	4.6	4.2	4.3	2.6	2.8	2.1	1.2	1.2	0.7	1.4	1.5	0.9	1.0	0.8	1.6	1.7
27	1.4	1.5	1.2	0.9	0.6	0.8	1.3	0.8	2.0	2.5	3.2	4.0	4.5	4.8	4.7	3.7	4.8	5.2	5.4	5.2	4.6	5.1	4.5	5.4
28	4.1	4.3	3.8	2.9	1.3	0.6	0.4	0.5	1.4	1.1	8.0	0.4	0.9	0.7	8.0	2.0	2.8	1.3	0.9	1.0	1.2	1.0	1.1	1.2
29	1.2	8.0	0.6	1.6	1.4	1.0	0.4	0.4	0.6	0.6	0.3	0.2	1.2	1.6	1.5	1.8	1.6	1.4	1.6	1.4	1.3	1.5	2.0	2.4
30	2.8	2.7	3.0	3.2	3.6	3.3	3.6	4.0	4.4	4.7	5.2	4.5	4.5	5.1	5.4	5.9	5.1	4.8	4.6	4.0	3.5	4.1	4.2	2.6
31	1.8	2.0	2.6	2.3	1.8	2.3	0.9	0.4	0.6	0.4	0.5	0.5	1.1	0.7	0.4	0.3	0.3	0.4	0.8	0.9	1.2	1.4	0.7	1.1

TABLE 4

Average Wind Direction (degrees from North)
EPA Station ID 00010348-C-1
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
December 2023

							Ryley \	Vind Di	rection I	Data (de	grees, k	lowing	from) -	Month (of Dece	mber 2	023							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	163	160	128	99	95	94	94	94	94	87	89	92	106	114	111	109	108	113	89	107	196	188	150	179
2	165	147	169	172	179	141	160	150	133	130	110	106	87	108	77	104	85	97	148	196	234	253	268	259
3	262	260	249	246	250	250	209	186	176	173	174	174	170	160	128	123	102	105	111	118	200	252	257	261
4	263	225	218	206	180	191	187	188	187	184	190	185	186	189	193	185	175	160	168	127	73	73	83	92
5	83	97	100	107	112	111	151	120	114	111	125	154	207	184	208	262	273	267	267	241	215	242	229	202
6	179	185	197	209	232	225	250	241	200	134	203	184	235	90	108	130	118	113	109	113	109	132	197	174
7	168	93	180	315	319	333	338	341	336	332	328	320	307	284	264	279	270	260	238	252	248	256	263	242
8	244	244	248	252	253	258	258	260	243	257	207	238	245	263	237	198	193	234	222	227	236	232	233	239
9	235	247	241	227	181	47	38	23	28	30	43	67	114	161	169	105	86	83	81	83	84	79	86	98
10	105	99	112	155	160	153	178	153	173	182	184	192	189	190	205	226	248	246	280	270	258	250	268	286
11	304	300	269	277	274	301	308	314	312	294	263	240	253	218	167	170	166	166	136	106	107	105	118	151
12	180	179	188	232	240	223	208	184	135	152	169	175	185	175	180	180	178	177	175	172	168	168	173	131
13	150	165	176	177	179	167	169	161	168	142	127	155	145	162	156	164	170	169	185	164	181	183	217	229
14	294	310	309	309	301	290	251	264	301	300	299	267	255	235	191	202	199	188	181	172	182	248	122	115
15	184	170	112	162	178	172	170	150	120	135	137	128	116	138	147	137	136	142	133	147	150	159	156	152
16	157	154	181	273	297	280	278	280	278	280	286	294	272	253	264	183	211	199	197	201	208	214	243	295
17	315	315	317	309	293	277	271	249	193	216	201	188	180	179	160	142	140	144	150	144	141	129	114	122
18	174	178	171	143	155	174	170	177	180	187	190	231	259	266	260	234	168	52	30	49	307	294	288	296
19	287	275	198	36	38	19	52	43	53	50	50	55	58	59	59	57	61	57	57	59	63	71	70	70
20	78	78	70	86	90	99	101	103	118	125	109	120	158	206	159	110	104	145	136	147	161	149	194	250
21	260	275	277	279	279	269	259	193	180	161	148	145	129	123	116	94	98	99	112	116	115	120	129	126
22	129	132	126	115	133	130	117	124	123	128	138	165	150	156	157	176	190	161	150	182	176	211	293	297
23	288	299	305	295	303	299	292	291	282	295	273	264	256	277	284	282	271	255	255	254	251	231	202	192
24	168	165	157	176	176	165	164	166	167	161	162	160	153	151	136	137	145	137	131	133	140	123	105	108
25 26	121	119	138	126	134	168	161	220	232	216	240	240	237	156	128	88	101	105	127	122 235	110	113 194	108	112 187
26	111	116	116	122	116	115	112	114	117	119	128	135	135	164	179	259	246	236	249		226		188	
28	188	192 114	193	166	159	161 160	134 174	154	125 244	108	115 264	107 257	103 226	105 202	108 231	111	106 239	105	107 211	111 213	121 218	121 217	124 215	129 230
28	115	266	128	130 259	158	268	245	211	244 179	248	264 143		226 124	202 114	125	248	239 120	227	211 95	122		109		115
30	254 110	∠00 113	251 103	259 107	254 108	∠00 111	245 109	235 102	107	131 105	102	115 107	107	107	125	117 98	102	127 106	95 105	109	102 113	112	111 111	136
31	128	118	128	149	156	144	186	175	151	229	206	179	266	187	237	96 120	188	299	272	236	254	244	268	270

TABLE 5

Average Wind Direction (degrees from North) EPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

							Ryley	Wind D	irection	Data (de	grees, l	olowing	from) -	Month o	of Dece	mber 2	023							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	(X)																							
2	(X)																							
3	(X)																							
4	(X)																							
5	(X)																							
6	(X)																							
7	(X)																							
8	(X)																							
9	(X)																							
10	(X)																							
11	(X)																							
12	(X)																							
13	(X)																							
14	(X)																							
15	(X)																							
16	(X)																							
17	(X)																							
18	(X)																							
19	(X)																							
20	(X)																							
21	(X)																							
23	(X)																							
24	(X)	(X) (X)	(X)	(X)	(X)	(X)																		
25	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X) (X)	(X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X) (X)	(X) (X)	(X) (X)							
26	(X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X)	(X)	(X) (X)							
27	(X) (X)	(X) (X)	(X)	(X) (X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X) (X)						
28	(X) (X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X)	(X) (X)	(X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X) (X)
29	(X) (X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X)	(X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X) (X)
30	(X) (X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)									
31	(X) (X)	(X) (X)	(X)	(X)	(X)	(X)	(X)	(X)	(X) (X)	(X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X)	(X)	(X)	(X) (X)
JI	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)	(^)

Notes:

- (X) - Equipment Malfunction

TABLE 6

Most Frequent Wind Direction (degrees from North) EPA Station ID 00010348-C-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

							Ryley	Wind D	irection	Data (de	grees, b	lowing	from) -	Month o	of Dece	mber 20	023							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	185	176	146	112	114	112	106	111	118	113	116	116	126	124	128	126	141	118	99	134	230	215	178	213
2	213	138	156	198	195	144	150	131	129	128	116	112	111	126	118	113	87	119	147	201	237	258	266	268
3	265	266	254	249	252	231	228	223	222	220	219	211	184	173	145	132	120	118	119	138	226	253	263	270
4	259	237	234	229	225	223	224	220	219	223	224	220	220	224	224	210	211	176	193	133	78	91	107	110
5	101	115	115	124	124	127	185	127	126	124	143	175	221	225	240	278	270	268	260	231	229	239	227	233
6	203	223	225	228	258	236	244	249	213	110	132	225	232	94	116	136	142	127	129	115	192	174	202	241
7	131	102	234	327	327	313	322	255	341	343	338	317	308	282	273	284	278	257	259	262	251	257	257	266
8	256	259	259	254	253	251	251	250	258	261	277	258	273	275	264	252	237	255	253	246	253	247	253	254
9	258	245	247	239	233	231	227	230	232	234	224	226	228	215	172	119	117	115	117	117	116	114	116	120
10	123	105	129	176	150	206	209	197	220	215	209	220	221	224	228	240	256	255	268	258	242	251	277	291
11	312	301	263	282	277	283	289	291	296	291	276	253	256	220	165	179	162	154	149	117	121	143	145	164
12	208	219	225	241	245	223	229	230	223	220	220	218	217	216	217	214	206	194	187	188	182	183	158	158
13	162	183	196	175	195	165	144	170	175	143	132	127	140	170	142	185	188	189	212	167	196	214	232	244
14	304	326	319	297	301	285	247	257	295	294	289	260	253	231	223	213	190	212	201	178	202	227	114	123
15	198	175	127	164	195	180	181	161	129	144	137	126	127	143	149	142	143	150	146	150	152	156	161	155
16	156	142	202	286	298	278	280	280	283	287	289	292	272	261	254	214	226	223	219	217	225	227	251	289
17	294	297	297	290	282	281	274	238	224	233	225	223	216	195	167	166	153	150	171	141	129	125	123	140
18	205	219	222	221	219	223	224	221	229	224	225	238	251	264	257	224	172	127	24	65	286	272	255	297
19	213	252	200	41	35	24	72	64	76	71	78	88	94	90	86	93	96	98	96	104	105	110	110	107
20	107	108	107	112	113	115	113	112	123	125	119	135	167	213	149	117	117	158	137	153	169	155	241	249
21	263	282	289	279	273	256	250	186	161	146	147	143	143	144	136	125	127	124	125	127	127	132	137	140
22	139	145	128	132	149	128	118	133	136	143	129	188	138	139	144	203	220	201	155	203	216	245	296	296
23	290	289	293	291	287	286	283	284	278	282	277	270	265	280	281	277	275	263	262	265	254	239	224	227
24	224	222	221	219	218	217	217	216	212	190	200	184	181	177	158	146	166	138	143	156	158	136	117	116
25	137	134	147	135	150	222	199	235	239	240	243	231	237	179	125	102	108	109	148	124	116	112	113	111
26 27	118 218	124 224	124 228	132 196	126 162	126 187	121 135	125 174	127 124	130	144 122	152	147 118	178 117	189 121	265 117	250	245 120	254 121	235 123	232 126	209 129	219	216
28					165				134	119 257	270	125 234	227	222	237		118		121 224	226			130 230	136 239
29	120 249	126 251	127 240	136 250	248	179 242	217 208	234 218	253 134	257 107	138	234 115	22 <i>1</i> 129	222 129	23 <i>1</i> 135	250 120	249 132	236 144	224 98	226 135	229 104	237 100	230 113	239 116
30	249 118	251 128	240 116	250 117	240 117	242 120	206 117	210 115	118	107	115	120	119	129	121	118	118	121	90 119	121	104	122	126	149
31	133	128	133	147	147	146	216	188	155	200	202	177	278	176	178	166	173	286	256	241	245	238	273	275
31	133	IZδ	133	147	147	140	210	100	100	200	202	1//	218	170	1/0	100	1/3	200	250	Z4 I	245	238	213	2/5

TABLE 7

Wind Frequency Distribution
EPA Station ID 00010348-C-1
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
December 2023

			Frequency	Distribution R	eport: Ryley,	Alberta - Dec	ember 2023			
			Wind Spe	eed (m/s) and	Number of Oc	curences (mir	nutes)			Total Occurrences
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
			-	-	-		-			
North	> 337.5 - 22.5	67	224	185	137	260	1	1	2.0%	875
Northeast	> 22.5 - 67.5	88	346	282	350	605	28	1	3.8%	1700
East	> 67.5 - 112.5	105	1016	2382	3052	1098	34	1	17.2%	7688
Southeast	Southeast > 112.5 - 157.5		1757	3341	3188	829	4	0	20.6%	9216
South	> 157.5 - 202.5	112	923	2756	4346	1910	7	0	22.5%	10054
Southwest	> 202.5 - 247.5	88	808	1504	2039	719	1	0	11.6%	5159
West	> 247.5 - 292.5	68	1104	2497	2643	682	88	5	15.9%	7087
Northwest	> 292.5 - 337.5	52	453	540	766	719	251	80	6.4%	2861
Missing/Inva	alid Minutes								0.000%	0
Total Occuren	ces by Speed	677	6631	13487	16521	6822	414	88		44640
Occurent	ces by %	1.5%	14.9%	30.2%	37.0%	15.3%	0.9%	0.2%	100.000%	

Wind Frequency Distribution EPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report

December 2023

Frequency Distribution Report: Ryley, Alberta - December 2023										
			Wind Spe	eed (m/s) and		Total Occurrences				
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
North	> 337.5 - 22.5	0	0	0	0	0	0	0	0.0%	0
Northeast	> 22.5 - 67.5	0	0	0	0	0	0	0	0.0%	0
East	> 67.5 - 112.5	0	0	0	0	0	0	0	0.0%	0
Southeast	> 112.5 - 157.5	0	0	0	0	0	0	0	0.0%	0
South	> 157.5 - 202.5	0	0	0	0	0	0	0	0.0%	0
Southwest	> 202.5 - 247.5	0	0	0	0	0	0	0	0.0%	0
West	> 247.5 - 292.5	0	0	0	0	0	0	0	0.0%	0
Northwest	> 292.5 - 337.5	0	0	0	0	0	0	0	0.0%	0
Missing/Inv	Missing/Invalid Minutes					100%	44640			
Total Occurer	nces by Speed	0	0	0	0	0	0	0		44640
Occuren	ces by %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.00%	

Wind Frequency Distribution EPA Station ID 00010348-C-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report

December 2023

Frequency Distribution Report: Ryley, Alberta - December 2023										
			Wind Spe	eed (m/s) and			Total Occurrences			
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
			-	-			-			
North	> 337.5 - 22.5	271	605	104	6	0	0	0	2.2%	986
Northeast	> 22.5 - 67.5	181	243	36	0	0	0	0	1.0%	460
East	> 67.5 - 112.5	247	1588	987	743	234	1	0	8.5%	3800
Southeast	> 112.5 - 157.5	361	3324	5024	3874	566	13	0	29.5%	13162
South	> 157.5 - 202.5	395	2048	1851	925	47	0	0	11.8%	5266
Southwest	> 202.5 - 247.5	1928	7368	1214	187	13	0	0	24.0%	10710
West	> 247.5 - 292.5	760	4858	1508	830	265	11	0	18.4%	8232
Northwest	> 292.5 - 337.5	528	807	328	272	79	8	2	4.5%	2024
Missing/Inva	Missing/Invalid Minutes						0.0%	0		
Total Occuren	ces by Speed	4671	20841	11052	6837	1204	33	2		44640
Occurent	ces by %	10.5%	46.7%	24.8%	15.3%	2.7%	0.1%	0.0%	100.00%	

Total Suspended Particulate (TSP) Matter Results EPA Station ID 00010348-I-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

Filter ID	HV-23-02-17
Test ID	Facility Test # 109
Sample Start Date/Time	23/12/01 14:00:00
Sample End Date/Time	24/01/01 13:00:00
Sampling Time (hours)	10.33
Flow Rate (m³/min)	1.252
Volume (m³)	776.24
TSP Mass (mg)	147
TSP Concentration (ug/m³)	189.374
Sampler Name	TE-5170V / P8580 TSP VFC

Total Suspended Particulate (TSP) Matter Results EPA Station ID 00010348-I-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

Filter ID	HV-23-02-18
Test ID	School Test # 109
Sample Start Date/Time	23/12/01 14:00:00
Sample End Date/Time	24/01/01 13:00:00
Sampling Time (hours)	9.38
Flow Rate (m ³ /min)	1.251
Volume (m³)	704.313
TSP Mass (mg)	114
TSP Concentration (ug/m³)	161.860
Sampler Name	TE-5170V / P8581 TSP VFC

TABLE 12

Total Suspended Particulate (TSP) Matter Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

Filter ID	HVF-23-10-03	HVF-23-10-02	HVF-23-10-06	HVF-23-10-04	HVF-23-10-09
Test ID	875	876	877	878	879
Sample Start Date/Time	23/12/02 00:00:00	23/12/08 00:00:00	23/12/14 00:00:00	23/12/20 00:00:00	23/12/26 00:00:00
Sample End Date/Time	23/12/03 00:00:00	23/12/09 00:00:00	23/12/15 00:00:00	23/12/21 00:00:00	23/12/27 00:00:00
Sampling Time (hours)	23.78	24.09	24.31	24.56	24.37
Flow Rate (m ³ /min)	1.277	1.277	1.277	1.251	1.251
Volume (m³)	1822.02	1845.78	1862.63	1843.47	1829.21
TSP Mass (mg)	101	32.1	31	23.5	24.1
TSP Concentration (ug/m³)	55.433	17.391	16.643	12.748	13.175
Sampler Name	TE-5170V / P11162 TSP VFC				

TABLE 13

Particulate Matter PM₁₀ Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

Filter ID	AT85238	AT85237	AT76602	AT85099	AT83614
Test ID	875	876	877	878	879
Sample Start Date/Time	23/12/02 00:00:00	23/12/08 00:00:00	23/12/14 00:00:00	23/12/20 00:00:00	23/12/26 00:00:00
Sample End Date/Time	23/12/03 00:00:00	23/12/09 00:00:00	23/12/15 00:00:00	23/12/21 00:00:00	23/12/27 00:00:00
Sampling Time (hours)	24	24	24	24	24
Flow Rate (I/min)	16.7	16.7	16.7	16.7	16.7
Volume (m³)	24.4	24.9	24.1	24.4	24.2
PM ₁₀ Mass (mg)	0.728	0.184	0.102	0.155	0.070
PM ₁₀ Concentration (ug/m³)	29.836	7.390	4.232	6.352	2.893
Sampler Name	2000 FRM-AE / 200FB209860905				

TABLE 14

VOC and TNMOC Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

Parameter	Units	Date Sample ID AAAQO ⁽¹⁾	2-Dec-23 875	8-Dec-23 876	14-Dec-23 877	20-Dec-23 878	26-Dec-23 879
						. 0.07	
Total Non-Methane Organic Carbon	ppmv	-	< 0.08	< 0.08	< 0.08	< 0.07	< 0.08
1,2,3-Trimethylbenzene	ppbv	-	< 0.08	< 0.08	< 0.08	< 0.07	< 0.08
1,2,4-Trimethylbenzene	ppbv	-	< 0.05	< 0.05	< 0.05	0.07	0.08
1,3,5-Trimethylbenzene	ppbv	-	< 0.05	< 0.05	< 0.05	0.06	0.07
1-Butene/Isobutylene	ppbv	-	< 0.10	< 0.10	< 0.09	< 0.09	< 0.10
1-Hexene/2-Methyl-1-pentene	ppbv	-	< 0.12	< 0.11	< 0.11	< 0.10	< 0.12
1-Pentene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.04	< 0.05
2,2,4-Trimethylpentane	ppbv	-	< 0.03	< 0.03	0.03	< 0.03	0.05
2,2-Dimethylbutane	ppbv	-	< 0.03	< 0.03	< 0.03	0.03	0.04
2,3,4-Trimethylpentane	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.03	0.08
2,3-Dimethylbutane	ppbv	-	< 0.15	< 0.14	< 0.14	< 0.13	< 0.15
2,3-Dimethylpentane	ppbv	-	< 0.03 < 0.05	< 0.03 < 0.05	0.08 < 0.05	0.05 0.05	0.08 0.06
2,4-Dimethylpentane 2-Methylheptane	ppbv	-	< 0.03	< 0.03	0.05	< 0.03	< 0.03
2-Methylhexane	ppbv	-	0.06	< 0.05	0.11	< 0.03 < 0.04	0.03
•	ppbv	-	0.00	0.03	0.48	0.04	0.10
2-Methylpentane 3-Methylheptane	ppbv ppbv	- -	< 0.05	< 0.05	< 0.05	0.22	0.30
3-Methylhexane	ppbv	- -	0.07	0.05	0.03	0.06	0.10
3-Methylpentane	ppbv	- -	0.16	0.13	0.21	0.09	0.21
Benzene	ppbv	_	0.19	0.12	0.26	< 0.04	< 0.05
cis-2-Butene	ppbv	_	< 0.05	< 0.05	< 0.05	< 0.04	< 0.05
cis-2-Pentene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Cyclohexane	ppbv	_	0.07	< 0.06	0.17	0.12	0.15
Cyclopentane	ppbv	-	0.05	< 0.03	0.08	0.03	0.04
Ethylbenzene	ppbv	-	0.38	< 0.05	0.48	< 0.04	< 0.05
Isobutane	ppbv	-	2.01	1.79	0.86	0.60	0.79
Isopentane	ppbv	-	1.20	1.03	0.97	< 0.06	< 0.07
Isoprene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Isopropylbenzene	ppbv	-	< 0.07	< 0.06	< 0.06	< 0.06	< 0.07
m,p-Xylene	ppbv	161	0.22	< 0.06	1.55	< 0.06	0.07
m-Diethylbenzene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
m-Ethyltoluene	ppbv	-	< 0.05	< 0.05	0.09	< 0.04	< 0.05
Methylcyclohexane	ppbv	-	0.12	0.05	0.32	0.05	0.16
Methylcyclopentane	ppbv	-	0.12	0.15	0.22	0.09	0.28
n-Butane	ppbv	-	3.89	3.67	1.92	1.12	1.42
n-Decane	ppbv	-	< 0.10	< 0.10	< 0.09	< 0.09	< 0.10
n-Dodecane	ppbv	-	< 0.5	< 0.5	< 0.5	< 0.4	< 0.5
n-Heptane	ppbv	-	0.09	< 0.06	0.41	0.20	0.43
n-Hexane	ppbv	1990	0.26	0.44	0.53	0.22	0.82
n-Nonane	ppbv	-	< 0.07	< 0.06	0.12	< 0.06	< 0.07
n-Octane	ppbv	-	0.04	< 0.03	0.20	0.09	0.11
n-Pentane	ppbv	-	0.86	0.69	0.84	0.35	0.45
n-Propylbenzene	ppbv	-	< 0.10	< 0.10	< 0.09	< 0.09	< 0.10
n-Undecane	ppbv	-	< 0.8	< 0.8	< 0.8	< 0.7	< 0.8
o-Ethyltoluene	ppbv	- 161	< 0.03 < 0.05	< 0.03 < 0.05	0.05 0.37	< 0.03 < 0.04	< 0.03 < 0.05
o-Xylene p-Diethylbenzene	ppbv	161	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03
p-Ethyltoluene	ppbv ppbv	- -	< 0.03 < 0.07	< 0.03 < 0.06	0.03	< 0.03 < 0.06	< 0.03 < 0.07
Styrene	ppbv	-	0.07	< 0.06	0.07	0.13	0.07
Toluene	ppbv	- 106	0.24	0.28	5.09	0.13	0.15
trans-2-Butene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.04	< 0.05
trans-2-Pentene	ppbv	- -	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Total VOCs (2)	ppbv	-	13.780	11.880	18.570	6.330	9.350
	• •		-		-	-	-

Notes:

⁽¹⁾ Alberta Ambient Air Quality Objectives for a 24 hour averaging period.

⁽²⁾ Total VOCs are calculated under the assumption that values under the detection limit are equal to the detection limit, as per the AMD.

TABLE 15

TSP Metals Analytical Results EPA Station ID 00010348-I-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

	Date		-Dec-23	
Parameter	Sample II Lab Res		-23-02-17 (ug/m³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m³)
. Gramsto	Lub No.	Juito	(49)	/uulique (ug/)
Antimony	210	ng/Filter	5.20E-04	-
Arsenic	696	ng/Filter	1.72E-03	0.10
Barium	< 300	ng/Filter	7.43E-04	-
Beryllium	< 0.60	ng/Filter	1.49E-06	-
Boron	3670000	ng/Filter	9.09E+00	-
Cadmium	710	ng/Filter	1.76E-03	-
Chromium	10900	ng/Filter	2.70E-02	1.0
Cobalt	489	ng/Filter	1.21E-03	-
Copper	96400	ng/Filter	2.39E-01	-
Iron	1470000	ng/Filter	3.64E+00	-
Lead	27900	ng/Filter	6.91E-02	1.5
Manganese	148000	ng/Filter	3.67E-01	2
Mercury	< 0.70	ng/Filter	1.73E-06	-
Nickel	4200	ng/Filter	1.04E-02	6
Selenium	524	ng/Filter	1.30E-03	-
Silver	181	ng/Filter	4.48E-04	-
Thallium	25.9	ng/Filter	6.42E-05	-
Tin	349	ng/Filter	8.65E-04	-
Uranium	53.7	ng/Filter	1.33E-04	-
Vanadium	2600	ng/Filter	6.44E-03	-
Zinc	< 1000	ng/Filter	2.48E-03	-
Zirconium	759	ng/Filter	1.88E-03	-
Sampling Time (hours)	10.33			
Flow Rate (m3/min)	1.252			
Volume Sampled (m³)	776.24			

Notes:

- (1) These results are from a 10.33 hour averaging period that took place on December 1, 2023 to January 1, 2024
- (2) Measured data have been converted from the measured 10.33 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 16

TSP Metals Analytical Results EPA Station ID 00010348-I-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

	Dat Sample II	D HV	-Dec-23 -23-02-18	(0)
Parameter	Lab Res	sults ⁽¹⁾	(ug/m³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	49.1	ng/Filter	1.30E-04	-
Arsenic	327	ng/Filter	8.69E-04	0.10
Barium	634000	ng/Filter	1.06E-02	-
Beryllium	< 0.60	ng/Filter	1.59E-06	-
Boron	2290000	ng/Filter	6.09E+00	-
Cadmium	213	ng/Filter	5.66E-04	-
Chromium	1740	ng/Filter	4.62E-03	1.0
Cobalt	169	ng/Filter	4.49E-04	-
Copper	91600	ng/Filter	2.43E-01	-
Iron	378000	ng/Filter	1.00E+00	-
Lead	2310	ng/Filter	6.14E-03	1.5
Manganese	20900	ng/Filter	5.55E-02	2
Mercury	< 0.70	ng/Filter	1.86E-06	-
Nickel	1350	ng/Filter	3.59E-03	6
Selenium	564	ng/Filter	1.50E-03	-
Silver	62.8	ng/Filter	1.67E-04	-
Thallium	7.08	ng/Filter	1.88E-05	-
Tin	2160	ng/Filter	5.74E-03	-
Uranium	5.63	ng/Filter	1.50E-05	-
Vanadium	985	ng/Filter	2.62E-03	-
Zinc	< 1000	ng/Filter	2.66E-03	-
Zirconium	1670	ng/Filter	4.44E-03	-
Sampling Time (hours)	9.38			
Flow Rate (m3/min)	1.251			
Volume Sampled (m ³)	704.31			

Notes:

- (1) These results are from a 9.38 hour averaging period that took place on December 1, 2023 to January 1, 2024
- (2) Measured data have been converted from the measured 9.38 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 17

TSP Metals Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

	Date	е	2-Dec-23	
	Sample II	כ	875	
Parameter	Lab Res	sults ⁽¹⁾	(ug/m³) ⁽³⁾	AAAQO ⁽³⁾ (ug/m ³)
Antimony	298	ng/Filter	3.97E-04	_
Arsenic	1250	ng/Filter		0.10
Barium	< 300	ng/Filter		-
Beryllium	72.4	ng/Filter		-
Boron	5250000	ng/Filter		-
Cadmium	196	ng/Filter		-
Chromium	5360	ng/Filter		1.0
Cobalt	1030	ng/Filter		-
Copper	826000	ng/Filter	1.10E+00	-
Iron	3210000	ng/Filter	4.28E+00	-
Lead	10400	ng/Filter	1.39E-02	1.5
Manganese	110000	ng/Filter	1.47E-01	2
Mercury	3.98	ng/Filter	5.30E-06	-
Nickel	4100	ng/Filter	5.46E-03	6
Selenium	673	ng/Filter	8.97E-04	-
Silver	422	ng/Filter	5.62E-04	-
Thallium	21.4	ng/Filter	2.85E-05	-
Tin	332	ng/Filter	4.43E-04	-
Uranium	179	ng/Filter	2.39E-04	-
Vanadium	5420	ng/Filter	7.22E-03	-
Zinc	< 1000	ng/Filter	1.33E-03	-
Sampling Time (hours)	23.78			
Flow Rate (I/min)	1.277			
Volume Sampled (m³)	1822.02			

Notes:

- (1) These results are from an approximately 24 hour averaging period that took place on December 2, 2023.
- (2) Measured data have been converted from the measured approximately 24 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 18

PM10 Metals Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report December 2023

Domenton	Da Sample	ID	2-Dec-23 875	AAA QQ (2) ((m ³)
Parameter	Lab Re	sults ⁽¹⁾	(ug/m ³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	12.0	ng/Filter	1.20E-03	-
Arsenic	17.2	ng/Filter	1.72E-03	0.10
Barium	413	ng/Filter	4.12E-02	-
Beryllium	0.58	ng/Filter	5.79E-05	-
Boron	80.2	ng/Filter	8.00E-03	-
Cadmium	2.04	ng/Filter	2.04E-04	-
Chromium	38	ng/Filter	3.79E-03	1.0
Cobalt	7.26	ng/Filter	7.24E-04	-
Copper	787	ng/Filter	7.85E-02	-
Iron	27000	ng/Filter	2.69E+00	-
Lead	47.1	ng/Filter	4.70E-03	1.5
Manganese	830	ng/Filter	8.28E-02	2
Mercury	< 0.07	ng/Filter	6.99E-06	-
Nickel	23.5	ng/Filter	2.34E-03	6
Selenium	7.6	ng/Filter	7.58E-04	-
Silver	0.71	ng/Filter	7.08E-05	-
Thallium	0.35	ng/Filter	3.49E-05	-
Tin	5.75	ng/Filter	5.74E-04	-
Uranium	1.22	ng/Filter	1.22E-04	-
Vanadium	45.0	ng/Filter	4.49E-03	-
Zinc	586	ng/Filter	5.85E-02	-
Sampling Time (hours)	24			
Flow Rate (I/min)	16.7			
Volume Sampled (m ³)	24.4			

Notes:

- (1) These results are from an approximately 24 hour averaging period that took place on December 2, 2023.
- (2) Measured data have been converted from the measured approximately 24 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

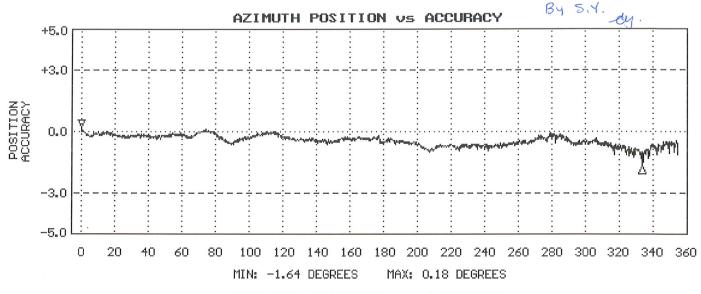
Appendix A Meteorological Station Calibration Report

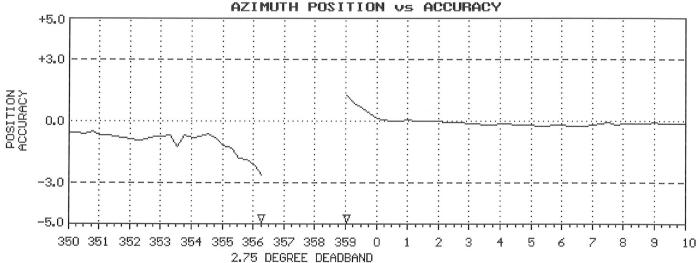
R. M. YOUNG COMPANY WIND SENSOR CALIBRATION CERTIFICATE

SENSOR: 05305-10A WIND MONITOR-AQ

SENSOR SERIAL NUMBER: WM149768

BEARINGS: SHIELDED/OIL LUBE


DATE: AUG 3 2016


WIND SPEED THRESHOLD TEST: PASS LOW WIND SPEED AMPLITUDE/FREQUENCY TEST: PASS HIGH WIND SPEED AMPLITUDE/FREQUENCY TEST: PASS

VANE TORQUE TEST: PASS

SPECIAL NOTES: SPECIAL NOTES:

Insp. By
Installed Nov. 8/16

NOTE: Azimuth Position vs Accuracy graphs are accurate to within 0.5 degrees. The accuracy shown in the potentiometer deadband region between 355 and 0 degrees is the result of no resistance change while position changes. The gap represents the actual deadband (open circuit).

GHD Wind Calibration Form

		Site and Instrur	ment Information		
	<u>Site</u>		<u>Win</u>	d Monitor	
Location:	Facility		Make:	RM Young	
Calibration Date:	Jun 30, 2023		Model:	05305	
Tech.:	P. Shariaty & S. Davey		Serial #:	149768	
Instrument:	Continuous Wind Monito	r	Calibration due:	Annually	
Time:	1:05 PM - 1:20 PM		Temperature:	25°C	
	re-Calibration Inspection			Y/N	
Is the wind dire	ction < +/- 10° from compas	ss observation?		N	
	Is siting aligned?			Υ	
•	propeller rotate 360° with n			Υ	
Does the	e vane rotate 360° with no f			Y	
	5. (1. (1.	Calibration	Information		
	Direction (degrees °)			Anemometer Speed	
Test Angle (°)	Recorded Angle (°)	Within +/- 5°? (Y/N)	. , ,		Within +/- 3 (m/s)? (Y/N)
0	0	Y	26.1	26.0	Y
30	29	Y	24.6	24.5	Y
60	59	Y	23.0	22.9	Y
180	178	Y	20.5 18.9	20.4 18.9	Y
			41.0	40.8	Ϋ́Υ
			41.0	40.0	'
	Comme	nts			on Factors
Miles al 1922 a 21 1 1 (O.) 1	40700)	According to the second	-l Al 19 2	m/s	RPM
,	49768) was removed from			26.112	5100.0
	ne 30, 2023. Mechanical be	•	•	24.576	4800.0
inspected. Bearings were cleaned of any dust buildup. Alignment was in good condition. Wind direction calibration adjustment was required based on the pre-			23.040	4500.0	
calibration inspection. Other than cleaning and direction calibration, no additional			20.480 18.944	4000.0 3700.0	
maintenance was required. It is recommended that the instrument be cleaned			40.960	8000.0	
biannually and bear	ings checked and replaced ation check, wind monitor v	d (if required) at the i	next calibration	40.300	0000.0
	Calibration Adjustment	Required?: Yes			

GHD Wind Calibration Form

		Site and Instrur	nent Information		
	Site		<u>Win</u>	d Monitor	
Location:	Ryley School		Make:	RM Young	
Calibration Date:	Jun 30, 2023		Model:	05305	
Tech.:	P. Shariaty & S. Davey		Serial #:	183487	
Instrument:	Continuous Wind Monito	r	Calibration due:	Annually	
Time:	10:00 AM - 11:20 AM		Temperature:	22°C	
Pı	re-Calibration Inspection	on		Y/N	
Is the wind dire	ction < +/- 10° from compas	ss observation?		N	
	Is siting aligned?			Υ	
Does the	propeller rotate 360° with n	o friction?		Υ	
Does th	e vane rotate 360° with no f	riction?		Υ	
		Calibration	Information		
	Direction (degrees °)			Anemometer Speed	(m/s)
Test Angle (°)	Recorded Angle (°)	Within +/- 5°? (Y/N)	Test Speed (m/s)	Recorded Speed (m/s)	Within +/- 3 (m/s)? (Y/N)
0	1	Υ	26.112	26.0	Υ
30	29	Υ	24.576	24.5	Υ
330	332	Υ	23.040	22.9	Υ
60	57	Υ	20.480	20.4	Υ
90	86	Υ	18.944	18.9	Υ
0	1	Υ	40.960	40.8	Υ
180	176	Υ			
260	256	Y			
	Comme	nts		Conversi	on Factors
				m/s	RPM
	83487) was removed from			26.112	5100.0
	ne 30, 2023. Mechanical b	•	•	24.576	4800.0
	were cleaned of any dust	. •	•	23.040	4500.0
condition. Wind direction calibration adjustment was required based on the pre-			20.480	4000.0	
calibration inspection. Other than cleaning and direction calibration, no additional			18.944	3700.0	
maintenance was required. It is recommended that the instrument be cleaned biannually and bearings checked and replaced (if required) at the next calibration			40.960	8000.0	
•	alibration check, the wind n	` '			
to the original position					
	Calibration Adjustment	Required?: Yes			

Appendix B Sampling Field Sheets

FIELD SHEET

PM₁₀ (Partisol Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Filter ID:	AT85238	
PO Number:	238012	1
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB2098	360905
Test number :	Particulate Test 875	
Sample Date:	23/12/02	yy/mm/dd
Shipping Date to Laboratory:	23/12/05	
PM10 Analysis Trigger Weight (mg):	1.22	weight which PM10 conc. > 50 μg/m ³
B) SAMPLING INFORMATION		
SAMPLE START		_
Sampling Start Date:	23/12/02	_
Sampling Start Time:	00:00	_
Current Instrument Date:	23/11/27	_
Current Instrument Time:	14:53	_
Ambient Temperature °C:	3.3	_
Barometric Pressure (mm Hg):	698	_
Leak Check:	Pass	(Pass/Fail)
Clean PM10 Inlet:	Yes	(Yes/No)
Weather Conditions Sampling date :	Mostly Sunny	
Weather Conditions set up:	Mostly Cloudy	
SAMPLE RETRIEVAL		
Sampled by	T. Webb	-
Sampling End Date:	23/12/03	-
Sampling End Time:	00:00	-
Current Instrument Date:	23/12/04	-
Current Instrument Time:	11:10	
Run Status:	Ok	(Ensure Run Status is OK)
Total Sampling Time (Hours):	24	-
Volume Sampled (m^3):	24.4	-
Average Flow Rate (L/min):	16.7 L/min	-
AmbT °C :	1.4	-
Barometric Pressure (mm Hg) :	697	-
Sample Filter Temperature °C:	1.5	-
Flow Rate Coefficient of Variation (%CV):	0	1
Weather Conditions :	Mostly Sunny	
Leak Check:	Pass	(Pass/Fail)
		(0
FIELD BLANK	••	(Once every quarter)
Was a field blank collected	No	(Yes/No)
Filter ID:		-
Filter Batch Number:		-
Current Instrument Date:		-
Current Instrument Time:		-

C) OBSERVATIONS

No

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 875	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 875	
Sample Date:	23/12/02	yy/mm/dd
Shipping Date to Laboratory:	23/12/03	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32212	
Flow Controller Serial No.:	H/L578699/A0334390-5	_
B) SAMPLE SET UP	Set up Conditions	Sample Retrieval
Date:	23/11/27	23/12/4
Ambient Temperature °C (inside shed):	13.2	15.7
Barometric Pressure (mm Hg):	698	698
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)4
Sample Time:	24	24
Sumple Times		
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch rain)	No	
within 24 hours prior to (or during) the sampling event?		
Describe general weather conditions during sampling		
event:	Mostly Sunny	
Describe facility operations that may affect sampling		
event:	None	
Comments:		

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID		Test #875 HVF-23-10-03				
Lab Filter ID		HVF-2	23-10-03		<u> </u>	
Start Sampling	12	2	0	2023		
	mm	dd	hr			
Stop Sampling	12	3	0	2023	_	
	mm	dd	hr			
Timer Initial:	_	1331.68				
Timer Final:		13!	55.46		_	
		23	3.78		_	
Total Sampling Time	23	nr	47_min		1427	
Average Flow Rate		cfm		-		
Actual m3/min	1.277					
Air Volume	1822.0	cubic metres				
Net TSP Weight		g				
TSP Concentration		mg/m3				
TSP Analysis Trigger Weight	91.1 mg		weight which TSP conc. > 50 μ g/m ³		• 50 μg/m³	
3. OBSERVATIONS						
Comments:						
Instrument Last Calibrated:			19-Oct-23			

3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET 10 (Partisol Monitoring Unit) EAN HARBORS CANADA INC RYLEY, ALBERTA		I	T
A) GENERAL INFORMATION				
Filter ID:	AT85237			
PO Number:	238012			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB2098	360	905	
Test number :	Particulate Test 876			
Sample Date:	23/12/08		yy/mm/dd	
Shipping Date to Laboratory:	23/12/13			
PM10 Analysis Trigger Weight (mg):	1.25		weight which PM10 conc.	> 50 μg/m³
B) SAMPLING INFORMATION SAMPLE START				
	22/42/00			
Sampling Start Date:	23/12/08			
Sampling Start Time: Current Instrument Date:	00:00			
Current Instrument Date: Current Instrument Time:	23/12/04 11:16			
Ambient Temperature °C: Barometric Pressure (mm Hg):	1.4	1		
Leak Check:	697		(Pacc/Eail)	
Clean PM10 Inlet:	Pass		(Pass/Fail)	
Weather Conditions Sampling date :	Yes narthy cloudy		(Yes/No)	
Weather Conditions sampling date : Weather Conditions set up:	partly cloudy			
weather Conditions set up.	passing clouds			
SAMPLE RETRIEVAL				
Sampled by	T. Webb			
Sampling End Date:	23/12/09			
Sampling End Time:	00:00			
Current Instrument Date:	23/12/11			
Current Instrument Time:	15:46			
Run Status:	Ok		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24			
Volume Sampled (m^3):	24.9			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C :	-8.9			
Barometric Pressure (mm Hg):	707			
Sample Filter Temperature °C:	-7.3			
Flow Rate Coefficient of Variation (%CV):	0.2			
Weather Conditions :	broken clouds			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	Yes	-	(Yes/No)	
Filter ID:	AT85100	-		
Filter Batch Number:	2211-111	-		
Current Instrument Date:	23/12/11			
Current Instrument Time:	15:55			
C) ODSEDVATIONS				
C) OBSERVATIONS				
Was there significant precipitation (e.g., >1/2-inch				
rain) within 24 hours prior to (or during) the sampling	No			
event?				
Describe facility operations that may affect sampling				
event:				
Comments:				
comments.				
			1	

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 876	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 876	
Sample Date:	23/12/08	yy/mm/dd
Shipping Date to Laboratory:	23/12/13	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	28956	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/12/04	23/12/11
Ambient Temperature °C (inside shed):	15.7	14.8
Barometric Pressure (mm Hg):	697	707
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.4	(-)4
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
Describe general weather conditions during sampling	Partly Cloudy	
event:	Faitiy Cloudy	
Describe facility operations that may affect sampling		
event:	None	
Comments:		
	-	

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID		Tes	t #876		
Lab Filter ID		HVF-23-10-02			
Start Sampling	12 mm	2 dd	0 hr	2023	
	111111	uu	111		
Stop Sampling	12	3	0	2023	
	mm	dd	hr		
Timer Initial:	_	13	55.46	_	
Timer Final:			79.55		<u> </u>
Timer Timar.			4.09		_
Total Sampling Time	24	hr	5	min	 1445
Average Flow Rate		cfm		_	
Actual m3/min	1.277				
Air Volume	1845.8	cubic metres	5		
Net TSP Weight		g			
TSP Concentration		mg/m3			
TSP Analysis Trigger Weight	92.3 mg weight which TSP conc. > 50 µ			> 50 μg/m ³	
3. OBSERVATIONS					
Comments:					
Instrument Last Calibrated:			19-Oct-23		
3. GUIDELINES					

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET 10 (Partisol Monitoring Unit EAN HARBORS CANADA INC RYLEY, ALBERTA			
A) GENERAL INFORMATION		-		
, , , cerver a community				
Filter ID:	AT76602			
PO Number:	238012			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB2098	360	905	
Test number :	Particulate Test 877			
Sample Date:	23/12/14		yy/mm/dd	
Shipping Date to Laboratory:	23/12/19			
PM10 Analysis Trigger Weight (mg):	1.21	<u> </u>	weight which PM10 conc.	> 50 μg/m ³
		\vdash		
B) SAMPLING INFORMATION		_		
SAMPLE START		_		
Sampling Start Date:	23/12/14	+		
Sampling Start Time:	00:00	+		
Current Instrument Time:	23/12/13	_		
Current Instrument Time:	15:42	+		
Ambient Temperature °C:	4.3	+		
Barometric Pressure (mm Hg): Leak Check:	694	+	(Dass/Fa:I)	
Clean PM10 Inlet:	Pass	+	(Pass/Fail)	
Weather Conditions Sampling date :	Yes mostly sloudy	+	(Yes/No)	
Weather Conditions sampling date : Weather Conditions set up:	mostly cloudy	+	+	
weather Conditions set up.	partly sunny	+		
SAMPLE RETRIEVAL				
Sampled by	T. Webb	+		
Sampling End Date:	23/12/15	+		
Sampling End Time:	00:00			
Current Instrument Date:	23/12/18			
Current Instrument Time:	13:45			
Run Status:	Ok	1	(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24			
Volume Sampled (m^3):	24.1			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C :	7.2			
Barometric Pressure (mm Hg) :	695			
Sample Filter Temperature °C:	6.9			
Flow Rate Coefficient of Variation (%CV):	0.1			
Weather Conditions :	partly sunny			
Leak Check:	Pass		(Pass/Fail)	
		<u> </u>		
FIELD BLANK		<u> </u>	(Once every quarter)	
Was a field blank collected	No	<u> </u>	(Yes/No)	
Filter ID:		<u> </u>		
Filter Batch Number:				
Current Instrument Date:		+		
Current Instrument Time:		_		
C) ODCEDIVATIONS		<u> </u>		
C) OBSERVATIONS		_	1	
Mosthors similiant musicitation (1994)		+	 	
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling	No			
event?				
3.00		\top	1	
			1	
Describe facility operations that may affect sampling				
event:				
Comments:		-	+	
Comments.		+		

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 877	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	_
Sampler Name:	Test 877	
Sample Date:	23/12/14	yy/mm/dd
Shipping Date to Laboratory:	23/12/19	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32261	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/12/13	23/12/18
Ambient Temperature °C (inside shed):	15.1	14.5
Barometric Pressure (mm Hg):	694	695
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)5
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
Describe general weather conditions during sampling	Mostly cloudy	
event:	lviostly cloudy	
Describe facility operations that may affect sampling		
event:	None	
Comments:		
		_

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID			st #877		
Lab Filter ID	HVF-23-10-06				_
Start Sampling	12	14	0	2023	
	mm	dd	hr		
Stop Sampling	12	15	0	2023	_
	mm	dd	hr		
Timer Initial:	-	13	379.55	_	
Timer Final:			103.86		_
Total Campling Time	24.31				<u> </u>
Total Sampling Time Average Flow Rate	24 hr cfm			<u>9</u> min	1459
Actual m3/min	1.277	•			
Air Volume	1862.6	cubic metre	S		
Net TSP Weight		g			
TSP Concentration		mg/m3			
TSP Analysis Trigger Weight	93.1	mg	weight whic	th TSP conc.	> 50 μg/m ³
3. OBSERVATIONS					
Comments:					
Instrument Last Calibrated:			19-Oct-23		
3. GUIDELINES					

3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET 10 (Partisol Monitoring Un EAN HARBORS CANADA IN RYLEY, ALBERTA		
A) GENERAL INFORMATION			
Filter ID:	AT85099		
PO Number:	238012		
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB20	9860905	
Test number :	Particulate Test 878		
Sample Date:	23/12/20	yy/mm/dd	
Shipping Date to Laboratory:	24/01/02		
PM10 Analysis Trigger Weight (mg):	1.22	weight which PM10 conc.	> 50 μg/m ³
B) SAMPLING INFORMATION			
SAMPLE START			
Sampling Start Date:	23/12/20		
Sampling Start Time:	00:00		
Current Instrument Date:	23/12/18		
Current Instrument Time:	13:52		
Ambient Temperature °C:	7.7		
Barometric Pressure (mm Hg):	695		
Leak Check:	Pass	(Pass/Fail)	
Clean PM10 Inlet:	Yes	(Yes/No)	
Weather Conditions Sampling date :	mostly cloudy		
Weather Conditions set up:	partly sunny		
SAMPLE RETRIEVAL			
Sampled by	T. Webb		
Sampling End Date:	23/12/21		
Sampling End Time:	00:00		
Current Instrument Date:	23/12/21		
Current Instrument Time:	11:21		
Run Status:	Ok	(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24		
Volume Sampled (m^3):	24.4		
Average Flow Rate (L/min):	16.7 L/min		
AmbT °C:	2.8		
Barometric Pressure (mm Hg) :	700		
Sample Filter Temperature °C:	3.3		
Flow Rate Coefficient of Variation (%CV):	0		
Weather Conditions :	partly cloudy	(5. (5.1)	
Leak Check:	Pass	(Pass/Fail)	
FIELD BLANK		(Once every quarter)	
Was a field blank collected	No	(Yes/No)	
Filter ID:			
Filter Batch Number:			
Current Instrument Date:			
Current Instrument Time:			
<u>C) OBSERVATIONS</u>			
Was there significant presinitation (a.g., 4/2 in the			
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling	No		
event?			
Describe facility operations that may affect sampling			
event:			
Comments:			
comments.			

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 878	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	_
Sampler Name:	Test 878	
Sample Date:	23/12/20	yy/mm/dd
Shipping Date to Laboratory:	24/01/02	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32249	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/12/18	23/12/21
Ambient Temperature °C (inside shed):	14.5	15.0
Barometric Pressure (mm Hg):	695	700
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.4	(-)4
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
Describe general weather conditions during sampling	Mostly cloudy	
event:	most, closely	
Describe facility operations that may affect sampling		
event:	None	
Commenter		
Comments:		

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID		Test	#878		
Lab Filter ID		HVF-23-10-04			<u> </u>
Start Sampling	12	20	0	2023	
Start Sampling	mm	dd	hr		
Stop Sampling	12	21	0	2023	_
or property of	mm	dd	hr		
Timer Initial:	-	140	3.86	_	
Timer Final:			8.42		
	24.56				
Total Sampling Time		24_hr		<u>1</u> min	1474
Average Flow Rate		cfm			
Actual m3/min	1.251				
Air Volume	1843.5	cubic metres			
Net TSP Weight		g			
TSP Concentration		mg/m3			
TSP Analysis Trigger Weight	92.2 mg		weight whic	h TSP conc. >	> 50 μg/m
3. OBSERVATIONS					
Comments:					
Instrument Last Calibrated:			13-Dec-23		
3. GUIDELINES					

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET 10 (Partisol Monitoring Unit EAN HARBORS CANADA INC RYLEY, ALBERTA		Ι	
A) GENERAL INFORMATION				
A CENTER OF COMMITTEE OF COMMIT				
Filter ID:	AT83614			
PO Number:	238012			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	860	905	
Test number :	Particulate Test 879			
Sample Date:	23/12/26		yy/mm/dd	
Shipping Date to Laboratory:	24/01/02			
PM10 Analysis Trigger Weight (mg):	1.21		weight which PM10 conc.	> 50 μg/m ³
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/12/26			
Sampling Start Time:	00:00			
Current Instrument Date:	23/12/21			
Current Instrument Time:	11:29			
Ambient Temperature °C:	3.7			
Barometric Pressure (mm Hg):	700		1	
Leak Check:	Pass		(Pass/Fail)	
Clean PM10 Inlet:	Yes		(Yes/No)	
Weather Conditions Sampling date :	Scattered clouds			
Weather Conditions set up:	Broken clouds			
	Broken clouds			
SAMPLE RETRIEVAL				
Sampled by	T. Webb			
Sampling End Date:	23/12/27			
Sampling End Time:	00:00			
Current Instrument Date:	23/12/28			
Current Instrument Time:	11:09			
Run Status:	Ok		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24		,	
Volume Sampled (m^3):	24.2			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C :	4.8			
Barometric Pressure (mm Hg):	699			
Sample Filter Temperature °C:	4.4			
Flow Rate Coefficient of Variation (%CV):	0			
Weather Conditions :	sunny			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:				
Filter Batch Number:				
Current Instrument Date:				
Current Instrument Time:				
C) OBSERVATIONS				
Was there significant presinitation (a.g., \$1/2 in the				
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling	No			
event?				
Describe facility operations that may affect sampling				
event:				
Comments:				
Comments:		1		
		1	+	

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 879	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 879	
Sample Date:	23/12/26	yy/mm/dd
Shipping Date to Laboratory:	24/01/02	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	29004	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP	6	
	Set up Conditions	Sample Retrieval
Date:	23/12/21	23/12/28
Ambient Temperature °C (inside shed):	15.0	18.0
Barometric Pressure (mm Hg):	700	699
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)8
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
S 11 11 11 11 11 11 11 11		
Describe general weather conditions during sampling	scattered clouds	
event:		
Describe facility operations that may affect sampling		
, , , , , , , , , , , , , , , , , , , ,	None	
event:	None	
Comments:		
Comments.		

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID		Tes	t #879		
Lab Filter ID		HVF-2	23-10-09		
Start Sampling	12 mm	26 dd	0 hr	2023	
		uu	111		
Stop Sampling	12	27	0	2023	<u> </u>
	mm	dd	hr		
Timer Initial:	_	14	28.42	_	
Timer Final:			52.79		
Timer Timar.			4.37		_
Total Sampling Time	24	hr	22	 1462	
Average Flow Rate		cfm		_	
Actual m3/min	1.251				
Air Volume	1829.2	cubic metres	:		
Net TSP Weight	{	3			
TSP Concentration		mg/m3			
TSP Analysis Trigger Weight	91.5	mg	weight whic	h TSP conc. >	• 50 μg/m³
3. OBSERVATIONS					
Comments:					
Instrument Last Calibrated:			13-Dec-23		
3. GUIDELINES					

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

FIELD SHEET TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC

RYLEY, ALBERTA

1. SAMPLING INFORMATION

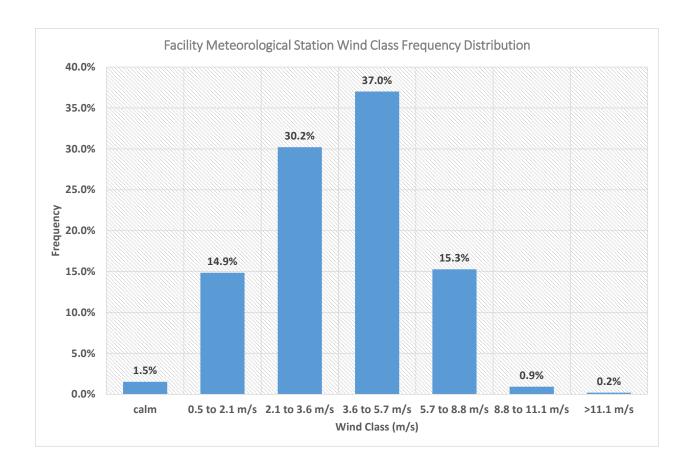
2. SAMPLING INFORMATION

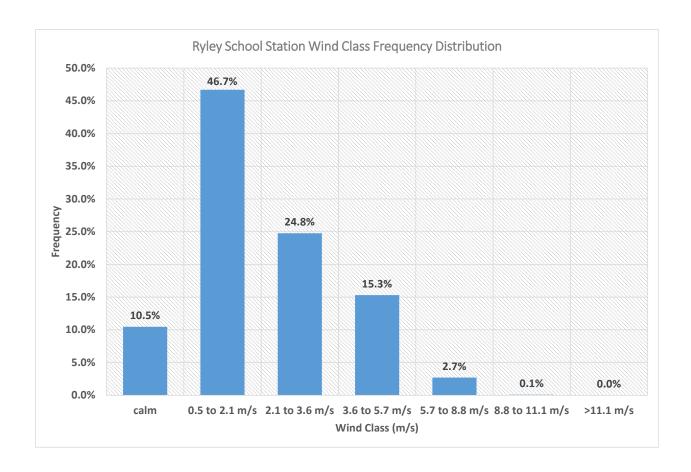
Sample ID		Facility T	est # 109			Sample ID		School T	est # 109		
Lab Filter ID		HV-23	-02-17		_	Lab Filter ID		HV-23	3-02-18		_
Start Sampling	12 mm	1 dd	14 hr	2023		Start Sampling	12 mm	1 dd	14 hr	2023	
Stop Sampling	1 mm	1 dd	13 hr	2024	_	Stop Sampling	1 mm	1 dd	13 hr	2024	_
Timer Initial: Timer Final:			4.34 4.64		_ _	Timer Initial: Timer Final:			7.31 47.7		_
Total Sampling Time Average Flow Rate Actual m3/min Air Volume Net TSP Weight TSP Concentration	1.252 776.2	hr cfm cubic metre g mg/m3		<u>)</u> min	620	Total Sampling Time Average Flow Rate Actual m3/min Air Volume Net TSP Weight TSP Concentration	1.251 704.3	hr cfm cubic metro g mg/m3		3 min	563
3. OBSERVATIONS Comments:											

3. GUIDELINES

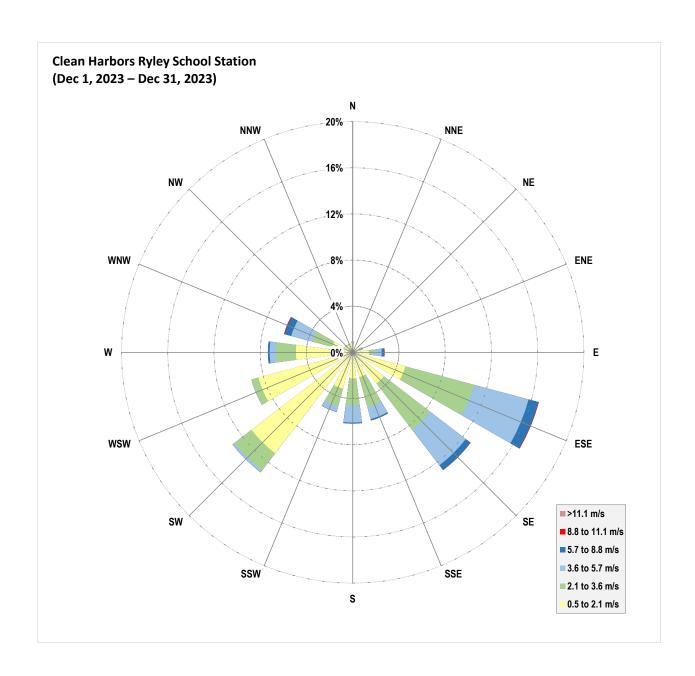
Faceplate must be handtight.

Instrument Last Calibrated:


- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.


Sample was collected in accordance with the above guidelines.


Sampler's Signature:	Clan Gula
Comments:	


13-Dec-23

Appendix C Wind Class Frequency Distribution Graphs and Wind Rose

Appendix D Chain of Custody Forms and Laboratory Analytical Reports

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 12

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0 **CLIENT SAMPLE ID** Matrix Air Filter

HiVol Test # 875 - Filter # HVF-23-10-03

CANISTER ID:

PRIORITY: Normal

HiVol Filter **DESCRIPTION:**

02-Dec-23 0:00 06-Dec-23 **DATE SAMPLED: DATE RECEIVED:** 26-Jan-24 REPORT CREATED: **REPORT NUMBER:** 23120022

> **VERSION Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120022-003	Antimony		298 ng/Filter	0.30	AC-021	20-Jan-24
23120022-003	Arsenic		1250 ng/Filter	0.30	AC-021	20-Jan-24
23120022-003	Barium	K, T, U	< 300 ng/Filter	300	AC-021	20-Jan-24
23120022-003	Beryllium		72.4 ng/Filter	0.60	AC-021	20-Jan-24
23120022-003	Boron		5250000 ng/Filter	600	AC-021	20-Jan-24
23120022-003	Cadmium		196 ng/Filter	0.80	AC-021	20-Jan-24
23120022-003	Chromium		5360 ng/Filter	20	AC-021	20-Jan-24
23120022-003	Cobalt		1030 ng/Filter	0.50	AC-021	20-Jan-24
23120022-003	Copper		826000 ng/Filter	20	AC-021	20-Jan-24
23120022-003	Iron		3210000 ng/Filter	80	AC-021	20-Jan-24
23120022-003	Lead		10400 ng/Filter	0.70	AC-021	20-Jan-24
23120022-003	Manganese		110000 ng/Filter	1.0	AC-021	20-Jan-24
23120022-003	Mercury		3.98 ng/Filter	0.70	AC-021	20-Jan-24
23120022-003	Nickel		4100 ng/Filter	5.0	AC-021	20-Jan-24
23120022-003	Selenium		673 ng/Filter	4.0	AC-021	20-Jan-24
23120022-003	Silver		422 ng/Filter	0.50	AC-021	20-Jan-24
23120022-003	Thallium		21.4 ng/Filter	0.20	AC-021	20-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

E-mail: EAS.Results@innotechalberta.ca Date: January 26, 2024 Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** Air Filter 02-Dec-23 0:00

HiVol Test # 875 - Filter # HVF-23-10-03

HiVol Filter **DESCRIPTION:**

REPORT NUMBER: 23120022 26-Jan-24 **VERSION Version 01 REPORT CREATED:**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120022-003	Tin		332 ng/Filter	0.20	AC-021	20-Jan-24
23120022-003	Uranium		179 ng/Filter	0.200	AC-021	20-Jan-24
23120022-003	Vanadium		5420 ng/Filter	0.40	AC-021	20-Jan-24
23120022-003	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	20-Jan-24
23120022-003	Particulate Weight		101 mg	0.1	Research	07-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 26, 2024 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 3 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** Air Filter 02-Dec-23 0:00

PM10 Test # 875 - Filter # AT85238

PM10 Filter **DESCRIPTION:**

REPORT NUMBER: 23120022 26-Jan-24 **VERSION Version 01 REPORT CREATED:**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120022-002	Antimony		12.0 ng/Filter	0.03	AC-021	19-Jan-24
23120022-002	Arsenic		17.2 ng/Filter	0.03	AC-021	19-Jan-24
23120022-002	Barium		413 ng/Filter	0.3	AC-021	19-Jan-24
23120022-002	Beryllium		0.58 ng/Filter	0.06	AC-021	19-Jan-24
23120022-002	Boron		80.2 ng/Filter	0.6	AC-021	19-Jan-24
23120022-002	Cadmium		2.04 ng/Filter	0.08	AC-021	19-Jan-24
23120022-002	Chromium		38 ng/Filter	2	AC-021	19-Jan-24
23120022-002	Cobalt		7.26 ng/Filter	0.05	AC-021	19-Jan-24
23120022-002	Copper		787 ng/Filter	2	AC-021	19-Jan-24
23120022-002	Iron		27000 ng/Filter	8	AC-021	19-Jan-24
23120022-002	Lead		47.1 ng/Filter	0.07	AC-021	19-Jan-24
23120022-002	Manganese		830 ng/Filter	0.1	AC-021	19-Jan-24
23120022-002	Mercury	K, T, U	< 0.07 ng/Filter	0.07	AC-021	19-Jan-24
23120022-002	Nickel		23.5 ng/Filter	0.5	AC-021	19-Jan-24
23120022-002	Selenium		7.6 ng/Filter	0.4	AC-021	19-Jan-24
23120022-002	Silver		0.71 ng/Filter	0.05	AC-021	19-Jan-24
23120022-002	Thallium		0.35 ng/Filter	0.02	AC-021	19-Jan-24
23120022-002	Tin		5.75 ng/Filter	0.02	AC-021	19-Jan-24
23120022-002	Uranium		1.22 ng/Filter	0.020	AC-021	19-Jan-24
23120022-002	Vanadium		45.0 ng/Filter	0.04	AC-021	19-Jan-24
23120022-002	Zinc		586 ng/Filter	1	AC-021	19-Jan-24
23120022-002	Particulate Weight		0.728 mg	0.004	AC-029	12-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

E-mail: EAS.Results@innotechalberta.ca Date: January 26, 2024 Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

Page 4 of 12 **TEST REPORT**

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TNMOC Test # 875	32212	Ambient Air	02-Dec-23 0:00

Air Canister **DESCRIPTION:**

REPORT NUMBER: 26-Jan-24 **VERSION Version 01** 23120022 **REPORT CREATED:**

AZI OKI ROME	23120022	20 04.1 2 1			VERTOION	70101011 01
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120022-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	07-Dec-23
23120022-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	13-Dec-23
23120022-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	13-Dec-23
23120022-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	13-Dec-23
23120022-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	2,3-Dimethylbutane	K, T, U	< 0.15 ppbv	0.15	AC-058	13-Dec-23
23120022-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	2-Methylhexane	1	0.06 ppbv	0.05	AC-058	13-Dec-23
23120022-001	2-Methylpentane		0.44 ppbv	0.03	AC-058	13-Dec-23
23120022-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	3-Methylhexane	1	0.07 ppbv	0.03	AC-058	13-Dec-23
23120022-001	3-Methylpentane	1	0.16 ppbv	0.03	AC-058	13-Dec-23
23120022-001	Benzene	1	0.19 ppbv	0.05	AC-058	13-Dec-23
23120022-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	Cyclohexane	1	0.07 ppbv	0.07	AC-058	13-Dec-23
23120022-001	Cyclopentane	1	0.05 ppbv	0.03	AC-058	13-Dec-23
23120022-001	Ethylbenzene		0.38 ppbv	0.05	AC-058	13-Dec-23

On behalf of: Adam Malcolm, Manager, Chemical Testing

Report certified by: Andrea Conner, Admin Assistant

Date: January 26, 2024

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 87532212Ambient Air02-Dec-230:00

DESCRIPTION: Air Canister

REPORT NUMBER: 23120022 REPORT CREATED: 26-Jan-24 VERSION Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120022-001	Isobutane		2.01 ppbv	0.05	AC-058	13-Dec-23
23120022-001	Isopentane		1.20 ppbv	0.07	AC-058	13-Dec-23
23120022-001	Isoprene	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	13-Dec-23
23120022-001	m,p-Xylene	1	0.22 ppbv	0.07	AC-058	13-Dec-23
23120022-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	Methylcyclohexane	1	0.12 ppbv	0.03	AC-058	13-Dec-23
23120022-001	Methylcyclopentane	1	0.12 ppbv	0.08	AC-058	13-Dec-23
23120022-001	n-Butane		3.89 ppbv	0.03	AC-058	13-Dec-23
23120022-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	13-Dec-23
23120022-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	13-Dec-23
23120022-001	n-Heptane	1	0.09 ppbv	0.07	AC-058	13-Dec-23
23120022-001	n-Hexane	1	0.26 ppbv	0.05	AC-058	13-Dec-23
23120022-001	n-Octane	1	0.04 ppbv	0.03	AC-058	13-Dec-23
23120022-001	n-Pentane		0.86 ppbv	0.07	AC-058	13-Dec-23
23120022-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	13-Dec-23
23120022-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	13-Dec-23
23120022-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	13-Dec-23
23120022-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23
23120022-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	13-Dec-23
23120022-001	Styrene	1	0.24 ppbv	0.07	AC-058	13-Dec-23
23120022-001	Toluene		0.37 ppbv	0.05	AC-058	13-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 26, 2024 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 12

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

VOCs and TNMOC Test # 875 32212 Ambient Air 02-Dec-23 0:00

DESCRIPTION: Air Canister

REPORT NUMBER: 23120022 REPORT CREATED: 26-Jan-24 VERSION Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120022-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	13-Dec-23
23120022-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	13-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 26, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 12

Revision History

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 12

Methods

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 12

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
V	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 12

Order Comments

23120022

Test # 875. Send results to Stan Yuha.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 12

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 12 of 12

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 12

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix Air Filter

14-Dec-23

HI-VOL Test Number: 876 - HVF-23-10-02

CANISTER ID: HVF-23-10-02

PRIORITY: Normal

DESCRIPTION:

DATE SAMPLED: 08-Dec-23 0:00 **DATE RECEIVED:**

REPORT CREATED: 22-Jan-24 **REPORT NUMBER:** 23120119

VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120119-003	Particulate Weight		32.1 mg	0.1	Research	20-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 12

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Quarter 4 Field Blank - AT85100

PM10 Filter

Air Filter

11-Dec-23 15:55

DESCRIPTION:

REPORT NUMBER: 23120119 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120119-004	Particulate Weight	K, T, U	< 0.004 mg	0.004	AC-029	18-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 3 of 12

CLIENT SAMPLE ID

Particulate Weight

CANISTER ID

Matrix

DATE SAMPLED

PM10 Test Number: 876 - AT85237

AT85237

Air Filter

08-Dec-23

0:00

DESCRIPTION:

23120119-002

REPORT NUMBER: 23120119

REPORT CREATED:

22-Jan-24

VERSION:

Version 01

Lab ID **Parameter** Qualifier

Result Units 0.184 mg

RDL 0.004 Method AC-029

18-Dec-23

Analysis Date

Report certified by: Andrea Conner, Admin Assistant

Date: January 22, 2024

On behalf of: Adam Malcolm, Manager, Chemical Testing

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 12

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TNMOC Test Number: 876	28956	Ambient Air	08-Dec-23 0:00

DESCRIPTION:

REPORT NUMBER: 23120119 REPORT CREATED: 22-Jan-24 VERSION: Version 01

KEI OKI NOMBI	IN. 23120113 REFORT CREATED.	22-Jan-24			VERSION.	VEISION 01
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120119-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	14-Dec-23
23120119-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	15-Dec-23
23120119-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	15-Dec-23
23120119-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.11 ppbv	0.11	AC-058	15-Dec-23
23120119-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	2,3-Dimethylbutane	K, T, U	< 0.14 ppbv	0.14	AC-058	15-Dec-23
23120119-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	2-Methylpentane		0.19 ppbv	0.03	AC-058	15-Dec-23
23120119-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	3-Methylhexane	1	0.05 ppbv	0.03	AC-058	15-Dec-23
23120119-001	3-Methylpentane	1	0.13 ppbv	0.03	AC-058	15-Dec-23
23120119-001	Benzene	1	0.12 ppbv	0.05	AC-058	15-Dec-23
23120119-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	Cyclohexane	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	Cyclopentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024

Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test Number: 87628956Ambient Air08-Dec-230:00

DESCRIPTION:

REPORT NUMBER: 23120119 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120119-001	Isobutane		1.79 ppbv	0.05	AC-058	15-Dec-23
23120119-001	Isopentane		1.03 ppbv	0.06	AC-058	15-Dec-23
23120119-001	Isoprene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	Isopropylbenzene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	m,p-Xylene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	Methylcyclohexane	I	0.05 ppbv	0.03	AC-058	15-Dec-23
23120119-001	Methylcyclopentane	1	0.15 ppbv	0.08	AC-058	15-Dec-23
23120119-001	n-Butane		3.67 ppbv	0.03	AC-058	15-Dec-23
23120119-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	15-Dec-23
23120119-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	15-Dec-23
23120119-001	n-Heptane	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	n-Hexane		0.44 ppbv	0.05	AC-058	15-Dec-23
23120119-001	n-Octane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	n-Pentane		0.69 ppbv	0.06	AC-058	15-Dec-23
23120119-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	15-Dec-23
23120119-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	15-Dec-23
23120119-001	n-Nonane	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23
23120119-001	p-Ethyltoluene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	Styrene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Dec-23
23120119-001	Toluene	1	0.28 ppbv	0.05	AC-058	15-Dec-23

Report certified by: Andrea Conner, Admin Assistant

Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test Number: 87628956Ambient Air08-Dec-230:00

DESCRIPTION:

REPORT NUMBER: 23120119 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120119-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Dec-23
23120119-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 12

Revision History

Order ID	Ver	Date	Reason
23120119	01	22-Jan-24	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 12

Methods

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 12

Qualifiers

Data Qualifier Translation

3	Blank contamination; Analyte detected above the method reporting limit in an associated blank
	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
1	Reported value is estimated; Surrogate recoveries limits were exceeded
2	Reported value is estimated; No known QC criteria for this component
3	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
4	Reported value is estimated; The sample matrix interfered with the analysis
(Off-scale low. Actual value is known to be less than the value given
-	Off-scale high. Actual value is known to be greater than value given
J	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
3	Rejected data; Not suitable for the projects intended use
Г	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
/	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 12

Order Comments

23120119

Project ID: Test 876. Report also to yuha.stan@cleanharbors.com

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 12

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 12 of 12

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

CLIENT SAMPLE ID

HiVol Test #: 877, Flt # HVF-23-10-06

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Hi-Vol Filter

DATE SAMPLED: 14-Dec-23 0:00 **DATE RECEIVED:**

REPORT CREATED: 25-Jan-24 **REPORT NUMBER:** 23120149

VERSION Version 01

Matrix

Air Filter

19-Dec-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120149-003	Particulate Weight		31.0 mg	0.1	Research	02-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 25, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID CANISTER ID

Matrix

DATE SAMPLED

PM10 Test #: 877, Flt # AT76602

Air Filter

14-Dec-23 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 23120149

REPORT CREATED: 25-Jan-24

VERSION Version 01

Lab IDParameterQualifierResult UnitsRDLMethodAnalysis Date23120149-002Particulate Weight0.102 mg0.004AC-02921-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 25, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 3 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test #: 87732261Ambient Air14-Dec-230:00

DESCRIPTION: Air Canister

REPORT NUMBER: 23120149 REPORT CREATED: 25-Jan-24 VERSION Version 01

MEI OM HOME	23120113	20 04.1 2 .			VERGION	70101011 01
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120149-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	20-Dec-23
23120149-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	20-Dec-23
23120149-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	1-Butene/Isobutylene	K, T, U	< 0.09 ppbv	0.09	AC-058	20-Dec-23
23120149-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.11 ppbv	0.11	AC-058	20-Dec-23
23120149-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	2,2,4-Trimethylpentane	I	0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	2,3-Dimethylbutane	K, T, U	< 0.14 ppbv	0.14	AC-058	20-Dec-23
23120149-001	2,3-Dimethylpentane	I	0.08 ppbv	0.03	AC-058	20-Dec-23
23120149-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	2-Methylheptane	1	0.11 ppbv	0.03	AC-058	20-Dec-23
23120149-001	2-Methylhexane		0.21 ppbv	0.05	AC-058	20-Dec-23
23120149-001	2-Methylpentane		0.48 ppbv	0.03	AC-058	20-Dec-23
23120149-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	3-Methylhexane		0.27 ppbv	0.03	AC-058	20-Dec-23
23120149-001	3-Methylpentane		0.21 ppbv	0.03	AC-058	20-Dec-23
23120149-001	Benzene	1	0.26 ppbv	0.05	AC-058	20-Dec-23
23120149-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	Cyclohexane	1	0.17 ppbv	0.06	AC-058	20-Dec-23
23120149-001	Cyclopentane	1	0.08 ppbv	0.03	AC-058	20-Dec-23
23120149-001	Ethylbenzene		0.48 ppbv	0.05	AC-058	20-Dec-23

On behalf of: Adam Malcolm, Manager, Chemical Testing

Report certified by: Andrea Conner, Admin Assistant

Date: January 25, 2024 Inquiries: (780) 632 8403 E-r

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test #: 87732261Ambient Air14-Dec-230:00

DESCRIPTION: Air Canister

REPORT NUMBER: 23120149 REPORT CREATED: 25-Jan-24 VERSION Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120149-001	Isobutane		0.86 ppbv	0.05	AC-058	20-Dec-23
23120149-001	Isopentane		0.97 ppbv	0.06	AC-058	20-Dec-23
23120149-001	Isoprene	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	Isopropylbenzene	K, T, U	< 0.06 ppbv	0.06	AC-058	20-Dec-23
23120149-001	m,p-Xylene		1.55 ppbv	0.06	AC-058	20-Dec-23
23120149-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	m-Ethyltoluene	1	0.09 ppbv	0.05	AC-058	20-Dec-23
23120149-001	Methylcyclohexane		0.32 ppbv	0.03	AC-058	20-Dec-23
23120149-001	Methylcyclopentane		0.22 ppbv	0.08	AC-058	20-Dec-23
23120149-001	n-Butane		1.92 ppbv	0.03	AC-058	20-Dec-23
23120149-001	n-Decane	K, T, U	< 0.09 ppbv	0.09	AC-058	20-Dec-23
23120149-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	20-Dec-23
23120149-001	n-Heptane		0.41 ppbv	0.06	AC-058	20-Dec-23
23120149-001	n-Hexane		0.53 ppbv	0.05	AC-058	20-Dec-23
23120149-001	n-Octane		0.20 ppbv	0.03	AC-058	20-Dec-23
23120149-001	n-Pentane		0.84 ppbv	0.06	AC-058	20-Dec-23
23120149-001	n-Propylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	20-Dec-23
23120149-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	20-Dec-23
23120149-001	n-Nonane	1	0.12 ppbv	0.06	AC-058	20-Dec-23
23120149-001	o-Ethyltoluene	1	0.05 ppbv	0.03	AC-058	20-Dec-23
23120149-001	o-Xylene		0.37 ppbv	0.05	AC-058	20-Dec-23
23120149-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23
23120149-001	p-Ethyltoluene	1	0.07 ppbv	0.06	AC-058	20-Dec-23
23120149-001	Styrene	1	0.06 ppbv	0.06	AC-058	20-Dec-23
23120149-001	Toluene		5.09 ppbv	0.05	AC-058	20-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 25, 2024 Inquiries: (780) 632 8403 E-mail: EA

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

VOCs and TNMOC Test #: 877 32261 Ambient Air 14-Dec-23 0:00

DESCRIPTION: Air Canister

REPORT NUMBER: 23120149 REPORT CREATED: 25-Jan-24 VERSION Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23120149-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	20-Dec-23
23120149-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	20-Dec-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 25, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

Order ID	Ver	Date	Reason			
23120149	01	25-Jan-24	Report created			

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

Methods

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

Data Qualifier Translation

3	Blank contamination; Analyte detected above the method reporting limit in an associated blank
	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
1	Reported value is estimated; Surrogate recoveries limits were exceeded
2	Reported value is estimated; No known QC criteria for this component
3	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
4	Reported value is estimated; The sample matrix interfered with the analysis
(Off-scale low. Actual value is known to be less than the value given
-	Off-scale high. Actual value is known to be greater than value given
J	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q.	Sample held beyond the accepted holding time
3	Rejected data; Not suitable for the projects intended use
Г	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
/	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 11

Order Comments

23120149

Project ID: Test # 877. Report also to Stan Yuha.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix

Air Filter

04-Jan-24

HiVol Test # 878 - Filter # HVF-23-10-04

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Hi-Vol Filter

DATE SAMPLED: 20-Dec-23 0:00 **DATE RECEIVED:**

REPORT CREATED: 22-Jan-24 **REPORT NUMBER:** 24010027

VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010027-003	Particulate Weight		23.5 mg	0.1	Research	05-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Test # 878 - Filter # AT85099 Air Filter 20-Dec-23 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 24010027 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab IDParameterQualifierResult UnitsRDLMethodAnalysis Date24010027-002Particulate Weight0.155 mg0.004AC-02905-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 3 of 11

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TNMOC Test # 878	32249	Ambient Air	20-Dec-23 0:00

DESCRIPTION: Air Canister

REPORT NUMBER: 24010027 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010027-001	Total Non-Methane Organic Carbon	K, T, U	< 0.07 ppmv	0.07	NA-028	04-Jan-24
24010027-001	1,2,3-Trimethylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	06-Jan-24
24010027-001	1,2,4-Trimethylbenzene	1	0.07 ppbv	0.04	AC-058	06-Jan-24
24010027-001	1,3,5-Trimethylbenzene	1	0.06 ppbv	0.04	AC-058	06-Jan-24
24010027-001	1-Butene/Isobutylene	K, T, U	< 0.09 ppbv	0.09	AC-058	06-Jan-24
24010027-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.10 ppbv	0.10	AC-058	06-Jan-24
24010027-001	1-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	2,2-Dimethylbutane	1	0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	2,3-Dimethylbutane	K, T, U	< 0.13 ppbv	0.13	AC-058	06-Jan-24
24010027-001	2,3-Dimethylpentane	1	0.05 ppbv	0.03	AC-058	06-Jan-24
24010027-001	2,4-Dimethylpentane	1	0.05 ppbv	0.04	AC-058	06-Jan-24
24010027-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	2-Methylhexane	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	2-Methylpentane		0.22 ppbv	0.03	AC-058	06-Jan-24
24010027-001	3-Methylheptane	1	0.08 ppbv	0.04	AC-058	06-Jan-24
24010027-001	3-Methylhexane	1	0.06 ppbv	0.03	AC-058	06-Jan-24
24010027-001	3-Methylpentane	1	0.09 ppbv	0.03	AC-058	06-Jan-24
24010027-001	Benzene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	cis-2-Butene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	Cyclohexane	1	0.12 ppbv	0.06	AC-058	06-Jan-24
24010027-001	Cyclopentane	1	0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	Ethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 11

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** VOCs and TNMOC Test #878 Ambient Air 20-Dec-23 0:00 32249

DESCRIPTION: Air Canister

VERSION: Version 01 REPORT NUMBER: **REPORT CREATED:** 22-Jan-24 24010027

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010027-001	Isobutane		0.60 ppbv	0.04	AC-058	06-Jan-24
24010027-001	Isopentane	K, T, U	< 0.06 ppbv	0.06	AC-058	06-Jan-24
24010027-001	Isoprene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	Isopropylbenzene	K, T, U	< 0.06 ppbv	0.06	AC-058	06-Jan-24
24010027-001	m,p-Xylene	K, T, U	< 0.06 ppbv	0.06	AC-058	06-Jan-24
24010027-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	m-Ethyltoluene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	Methylcyclohexane	1	0.05 ppbv	0.03	AC-058	06-Jan-24
24010027-001	Methylcyclopentane	1	0.09 ppbv	0.07	AC-058	06-Jan-24
24010027-001	n-Butane		1.12 ppbv	0.03	AC-058	06-Jan-24
24010027-001	n-Decane	K, T, U	< 0.09 ppbv	0.09	AC-058	06-Jan-24
24010027-001	n-Dodecane	K, T, U	< 0.4 ppbv	0.4	AC-058	06-Jan-24
24010027-001	n-Heptane	1	0.20 ppbv	0.06	AC-058	06-Jan-24
24010027-001	n-Hexane	1	0.22 ppbv	0.04	AC-058	06-Jan-24
24010027-001	n-Octane	I	0.09 ppbv	0.03	AC-058	06-Jan-24
24010027-001	n-Pentane		0.35 ppbv	0.06	AC-058	06-Jan-24
24010027-001	n-Propylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	06-Jan-24
24010027-001	n-Undecane	K, T, U	< 0.7 ppbv	0.7	AC-058	06-Jan-24
24010027-001	n-Nonane	K, T, U	< 0.06 ppbv	0.06	AC-058	06-Jan-24
24010027-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	o-Xylene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010027-001	p-Ethyltoluene	K, T, U	< 0.06 ppbv	0.06	AC-058	06-Jan-24
24010027-001	Styrene	1	0.13 ppbv	0.06	AC-058	06-Jan-24
24010027-001	Toluene	1	0.06 ppbv	0.04	AC-058	06-Jan-24

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing Date: January 22, 2024

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

DESCRIPTION:

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 11

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** VOCs and TNMOC Test #878 Ambient Air 20-Dec-23 0:00

Air Canister

REPORT NUMBER: 24010027 **REPORT CREATED:** 22-Jan-24 **VERSION: Version 01**

32249

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010027-001	trans-2-Butene	K, T, U	< 0.04 ppbv	0.04	AC-058	06-Jan-24
24010027-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

Order ID	Ver	Date	Reason
24010027	01	22-Jan-24	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

Methods

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
/	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 11

Order Comments

24010027

Project ID: Test # 878. Send results to Stan Yuha.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix Air Filter

04-Jan-24

HiVol Test # 879 - Filter # HVF-23-10-09

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Hi-Vol Filter

DATE SAMPLED: 26-Dec-23 0:00 **DATE RECEIVED:**

REPORT CREATED: 22-Jan-24 **REPORT NUMBER:** 24010029

VERSION: Version 01

Lab IDParameterQualifierResult UnitsRDLMethodAnalysis Date24010029-003Particulate Weight24.1 mg0.1Research05-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Test # 879 - Filter # AT83614 Air Filter 26-Dec-23 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 24010029 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010029-002	Particulate Weight		0.070 mg	0.004	AC-029	05-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 3 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 87929004Ambient Air26-Dec-230:00

DESCRIPTION: Air Canister

REPORT NUMBER: 24010029 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010029-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	04-Jan-24
24010029-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	06-Jan-24
24010029-001	1,2,4-Trimethylbenzene	1	0.08 ppbv	0.05	AC-058	06-Jan-24
24010029-001	1,3,5-Trimethylbenzene	1	0.07 ppbv	0.05	AC-058	06-Jan-24
24010029-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	06-Jan-24
24010029-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	06-Jan-24
24010029-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24
24010029-001	2,2,4-Trimethylpentane	1	0.05 ppbv	0.03	AC-058	06-Jan-24
24010029-001	2,2-Dimethylbutane	1	0.04 ppbv	0.03	AC-058	06-Jan-24
24010029-001	2,3,4-Trimethylpentane	I	0.08 ppbv	0.03	AC-058	06-Jan-24
24010029-001	2,3-Dimethylbutane	K, T, U	< 0.15 ppbv	0.15	AC-058	06-Jan-24
24010029-001	2,3-Dimethylpentane	1	0.08 ppbv	0.03	AC-058	06-Jan-24
24010029-001	2,4-Dimethylpentane	1	0.06 ppbv	0.05	AC-058	06-Jan-24
24010029-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010029-001	2-Methylhexane	1	0.16 ppbv	0.05	AC-058	06-Jan-24
24010029-001	2-Methylpentane		0.30 ppbv	0.03	AC-058	06-Jan-24
24010029-001	3-Methylheptane	1	0.10 ppbv	0.05	AC-058	06-Jan-24
24010029-001	3-Methylhexane		0.21 ppbv	0.03	AC-058	06-Jan-24
24010029-001	3-Methylpentane		0.21 ppbv	0.03	AC-058	06-Jan-24
24010029-001	Benzene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24
24010029-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24
24010029-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010029-001	Cyclohexane	1	0.15 ppbv	0.07	AC-058	06-Jan-24
24010029-001	Cyclopentane	1	0.04 ppbv	0.03	AC-058	06-Jan-24
24010029-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 87929004Ambient Air26-Dec-230:00

DESCRIPTION: Air Canister

REPORT NUMBER: 24010029 REPORT CREATED: 22-Jan-24 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010029-001	Isobutane		0.79 ppbv	0.05	AC-058	06-Jan-24
24010029-001	Isopentane	K, T, U	< 0.07 ppbv	0.07	AC-058	06-Jan-24
24010029-001	Isoprene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010029-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	06-Jan-24
24010029-001	m,p-Xylene	I	0.07 ppbv	0.07	AC-058	06-Jan-24
24010029-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010029-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24
24010029-001	Methylcyclohexane	1	0.16 ppbv	0.03	AC-058	06-Jan-24
24010029-001	Methylcyclopentane		0.28 ppbv	0.08	AC-058	06-Jan-24
24010029-001	n-Butane		1.42 ppbv	0.03	AC-058	06-Jan-24
24010029-001	n-Decane	К, Т, U	< 0.10 ppbv	0.10	AC-058	06-Jan-24
24010029-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	06-Jan-24
24010029-001	n-Heptane		0.43 ppbv	0.07	AC-058	06-Jan-24
24010029-001	n-Hexane		0.82 ppbv	0.05	AC-058	06-Jan-24
24010029-001	n-Octane	I	0.11 ppbv	0.03	AC-058	06-Jan-24
24010029-001	n-Pentane		0.45 ppbv	0.07	AC-058	06-Jan-24
24010029-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	06-Jan-24
24010029-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	06-Jan-24
24010029-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	06-Jan-24
24010029-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010029-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24
24010029-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24
24010029-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	06-Jan-24
24010029-001	Styrene	1	0.15 ppbv	0.07	AC-058	06-Jan-24
24010029-001	Toluene	1	0.25 ppbv	0.05	AC-058	06-Jan-24

Report certified by: Andrea Conner, Admin Assistant

Date: January 22, 2024

Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 11

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** 0:00

VOCs and TNMOC Test #879 Ambient Air 26-Dec-23 29004

DESCRIPTION: Air Canister

REPORT NUMBER: 24010029 **REPORT CREATED:** 22-Jan-24 **VERSION: Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010029-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	06-Jan-24
24010029-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	06-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 22, 2024 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

Order ID	Ver	Date	Reason
24010029	01	22-Jan-24	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

Methods

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

B Blank contamination; Analyte detected above the method reporting limit in an associated blank I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded

- J2 Reported value is estimated; No known QC criteria for this component
- J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
- J4 Reported value is estimated; The sample matrix interfered with the analysis
- K Off-scale low. Actual value is known to be less than the value given
 L Off-scale high. Actual value is known to be greater than value given
- N Non-target analyte; Tentatively identified compound (using mass spectroscopy)
- Q Sample held beyond the accepted holding time
- R Rejected data: Not suitable for the projects intended use
- T Value reported is less than the laboratory method detection limit
- U Compound was analyzed for but not detected
- V Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 11

Order Comments

24010029

Project ID: Test # 879. Send results to Stan Yuha.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 9

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0 **CLIENT SAMPLE ID**

Ryley Facility Test # 109 HVF-23-02-17

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

REPORT CREATED:

01-Dec-23 0:00 **DATE SAMPLED:**

26-Jan-24

04-Jan-24 **DATE RECEIVED:**

24010028 **REPORT NUMBER:**

Matrix

Air Filter

VERSION Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010028-001	Antimony		210 ng/Filte	ter 0.30	AC-021	20-Jan-24
24010028-001	Arsenic		696 ng/Filte	ter 0.30	AC-021	20-Jan-24
24010028-001	Barium	K, T, U	< 300 ng/Filte	ter 300	AC-021	20-Jan-24
24010028-001	Beryllium	K, T, U	< 0.60 ng/Filte	ter 0.60	AC-021	20-Jan-24
24010028-001	Boron		3670000 ng/Filte	ter 600	AC-021	20-Jan-24
24010028-001	Cadmium		710 ng/Filte	ter 0.80	AC-021	20-Jan-24
24010028-001	Chromium		10900 ng/Filte	ter 20	AC-021	20-Jan-24
24010028-001	Cobalt		489 ng/Filte	ter 0.50	AC-021	20-Jan-24
24010028-001	Copper		96400 ng/Filte	ter 20	AC-021	20-Jan-24
24010028-001	Iron		1470000 ng/Filte	ter 80	AC-021	20-Jan-24
24010028-001	Lead		27900 ng/Filte	ter 0.70	AC-021	20-Jan-24
24010028-001	Manganese		148000 ng/Filte	ter 1.0	AC-021	20-Jan-24
24010028-001	Mercury	K, T, U	< 0.70 ng/Filte	ter 0.70	AC-021	20-Jan-24
24010028-001	Nickel		4200 ng/Filte	ter 5.0	AC-021	20-Jan-24
24010028-001	Selenium		524 ng/Filte	ter 4.0	AC-021	20-Jan-24
24010028-001	Silver		181 ng/Filte	ter 0.50	AC-021	20-Jan-24
24010028-001	Thallium		25.9 ng/Filte	ter 0.20	AC-021	20-Jan-24

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing E-mail: EAS.Results@innotechalberta.ca Date: January 26, 2024 Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 9

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDRyley Facility Test # 109 HVF-23-02-17Air Filter01-Dec-230:00

DESCRIPTION:

REPORT NUMBER: 24010028 REPORT CREATED: 26-Jan-24 VERSION Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010028-001	Tin		349 ng/Filter	0.20	AC-021	20-Jan-24
24010028-001	Uranium		53.7 ng/Filter	0.200	AC-021	20-Jan-24
24010028-001	Vanadium		2600 ng/Filter	0.40	AC-021	20-Jan-24
24010028-001	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	20-Jan-24
24010028-001	Zirconium		759 ng/Filter	1.0	AC-021	20-Jan-24
24010028-001	Particulate Weight		147 mg	0.1	Research	05-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: January 26, 2024 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 3 of 9

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** Ryley School Test # 109 HVF-23-02-18 Air Filter 01-Dec-23 0:00

DESCRIPTION:

REPORT NUMBER: 24010028 26-Jan-24 **VERSION Version 01 REPORT CREATED:**

					. =	
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
24010028-002	Antimony		49.1 ng/Filter	0.30	AC-021	20-Jan-24
24010028-002	Arsenic		327 ng/Filter	0.30	AC-021	20-Jan-24
24010028-002	Barium		634000 ng/Filter	300	AC-021	20-Jan-24
24010028-002	Beryllium	K, T, U	< 0.60 ng/Filter	0.60	AC-021	20-Jan-24
24010028-002	Boron		2290000 ng/Filter	600	AC-021	20-Jan-24
24010028-002	Cadmium		213 ng/Filter	0.80	AC-021	20-Jan-24
24010028-002	Chromium		1740 ng/Filter	20	AC-021	20-Jan-24
24010028-002	Cobalt		169 ng/Filter	0.50	AC-021	20-Jan-24
24010028-002	Copper		91600 ng/Filter	20	AC-021	20-Jan-24
24010028-002	Iron		378000 ng/Filter	80	AC-021	20-Jan-24
24010028-002	Lead		2310 ng/Filter	0.70	AC-021	20-Jan-24
24010028-002	Manganese		20900 ng/Filter	1.0	AC-021	20-Jan-24
24010028-002	Mercury	K, T, U	< 0.70 ng/Filter	0.70	AC-021	20-Jan-24
24010028-002	Nickel		1350 ng/Filter	5.0	AC-021	20-Jan-24
24010028-002	Selenium		564 ng/Filter	4.0	AC-021	20-Jan-24
24010028-002	Silver		62.8 ng/Filter	0.50	AC-021	20-Jan-24
24010028-002	Thallium		7.08 ng/Filter	0.20	AC-021	20-Jan-24
24010028-002	Tin		2160 ng/Filter	0.20	AC-021	20-Jan-24
24010028-002	Uranium		5.63 ng/Filter	0.200	AC-021	20-Jan-24
24010028-002	Vanadium		985 ng/Filter	0.40	AC-021	20-Jan-24
24010028-002	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	20-Jan-24
24010028-002	Zirconium		1670 ng/Filter	1.0	AC-021	20-Jan-24
24010028-002	Particulate Weight		114 mg	0.1	Research	05-Jan-24

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

E-mail: EAS.Results@innotechalberta.ca Date: January 26, 2024 Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 9

Revision History

Order ID	Ver	Date	Reason
24010028	01	26-Jan-24	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 9

Methods

Method	Description
AC-021 Research	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

AC-013 Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS) AC-020 Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems AC-021 Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS AC-026 Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems AC-029 Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance AC-035 Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water AC-038 Trace Metal Analysis of Water Samples by ICP-MS AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-055 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-074 Pesticides in Water AC-079 Alkylated PAH in Soil and Sediment	Method ID	Description
AC-021 Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS AC-026 Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems AC-029 Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance AC-035 Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water AC-038 Trace Metal Analysis of Water Samples by ICP-MS AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-026 Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems AC-029 Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance AC-035 Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water AC-038 Trace Metal Analysis of Water Samples by ICP-MS AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029 Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance AC-035 Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water AC-038 Trace Metal Analysis of Water Samples by ICP-MS AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-035 Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water AC-038 Trace Metal Analysis of Water Samples by ICP-MS AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-038 Trace Metal Analysis of Water Samples by ICP-MS AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-048 Specific Conductance (Conductivity Meter Method) AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-049 pH (Meter Method) AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-054 Alkalinity Total and Phenolphthalein AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-048	Specific Conductance (Conductivity Meter Method)
AC-058 Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-049	pH (Meter Method)
AC-060 Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-054	Alkalinity Total and Phenolphthalein
AC-061 Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-065 Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis AC-074 Pesticides in Water	AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-074 Pesticides in Water	AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
	AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-079 Alkylated PAH in Soil and Sediment	AC-074	Pesticides in Water
	AC-079	Alkylated PAH in Soil and Sediment
AC-080 Alkylated PAH in Water (SPE Extraction)	AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006 Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water	NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024 Analysis of Reduced Sulfur Compounds in Air	NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 9

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
/	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 9

Order Comments

24010028

Send results to Stan Yuha. Quote QT140005

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 9

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 9

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

Sample ID: 24010028-001 Priority: Normal

ANALYSIS REQUEST FORM

Project Code:

FOR AITF USE ONLY

Rec'd By:

Invoice Code: Client Code:

Ryley Facility Test # 109 HVF-23-02-17 Clean Harbours Cust Samp ID: Customer ID:

Phone: (780) 632-8284 Fax: (780) 632-8620 Shipping: Highway 16 A & 75 St Vegreville, AB T9C 1T4

Client details:

Company: Project ID:

Address:

Contact:

RUSH (Surcharge): Email: PO# 238539 Quote ID: QT140005 Special Instructions/Comments: AITF Contact; Tel: Fax 780.663.3539 Direct Line 780.663.2513 780.663.3828 Ext. 235 Home Office 780.663.2342 Mobile 780.934.2342 mendoza.jorge@cleanharbors.com Jorge A. Mendoza Laboratory Manager "People & Technology Creating a Safor, Cleaner Environment" Clean Harbors Environmental Services Box 390 , 2 Km North of Hwy 14 ReanHarbor www.cleanharbors.com Ryley, AB T0B 4A0 on Sec. Road 854

Telephone:

Email:

A STATE OF THE PROPERTY OF THE				
		Date/Time Sampled	npled	
Sample ID	Sample Source Description	From/To	0	Analysis Requested
		Date (dd/mm/yy)	Time (24 Hr)	
Dylov Eggility Tost # 100	7 00 00 MI # = 0 N = - 1 = 1	1/12/23		Particulate weight
Nyley Facility Test # 109	Filter Number # MV-23-02-17	1/1/24	10.30 hrs	ICP-MS analysis
Pyloy School Test # 100	Filter Number # HV-23-02-18	1/12/23		Particulate weight
13169 00100 (516)		1/1/24	9.39 hrs	ICP-MS analysis
			Ti di	
		3		

Sample ID: 23120022-001 Priority: Normal

Clean Harbours

Customer ID:

HAIN OF CUSTODY FORM

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

วี อี	Cust Samp ID:	VOCs and TNMOC Test # 875				li li
	Client Repo	Client Reporting Information	Client Billir	Client Billing Information	Turnaround Time	
	Company:	Clean Harbors Canada, Inc	Contact:	Stephanie Dennis	X Normal (10 business days)	
	Address:	PO Box 390, 50114 Range Road 173, Ryley, AB T0B 4A0	Phone:	780-663-3828	Rush	
	Contact:	Todd Webb or Stan Yuha	Email:	<u>Dennis.Stephanie@cleanharbors.com</u>	Note: Rush service not available for all tests.	
	Phone:	780-663-2513 or 780-663-3828	Project ID:	Test 875	Confirm rush requests with Innolech Alberta.	
	Email:	Webb.Todd@cleanharbors.com, Yuha.Stan@cleanharbors.com	PO #:	0000238012		
	Special Inst	Special Instructions/Comments:			Date Received – Lab Use Only	
	*If either P	*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals	ooth filters	are analyzed for metals		
	If neither fi	If neither filter exceeds its trigger weight, neither filter is analyzed for m	ed for metals	S		
	If metals ar	If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC	as filter weig	shts and VOCs/TNMOC		
	Trigger We	Trigger Weight for Analysis (PM10): 1.22 mg			DEC 0 6 2023	
	Trigger We	Trigger Weight for Analysis (HI-VOL): 91.1 mg				
						=

				Date Sampled	Time Sampled	
		Sample Source/	Canister Number/ (dd/mm/yy)	(dd/mm/yy)	(24 hour)	
Lab Sample No.	Client Sample ID	Description	Sampler ID	From / To	From / To	Analysis Requested
	VOCs and TNMOC Test		32212	02/12/23	00:00	SOUNT O STAND SOUNT
	Number: 875	Canister		03/12/23	00:00	VOC PAIVIS & LINIVIDGE
	TC0 14 + - + 0.1440	7 - 1 : 7 - 7 - 1 : 2 - 7 - 1 :	AT85238	02/12/23	00:00	FLT Particulate Weight (& metals if
	PINITU LEST NUMBER: 875	PINTO IIICE		03/12/23	00:00	over trigger weight)*
			HVF-23-10-03	02/12/23	00:00	
	HI-VOL Test Number: 875	HI-VOL Filter		03/12/23	00:00	Particulate Weight (& metals if over tripper weight)*
					Total: 23.78 hrs	(200
					,	
	Action 1					

Client Authorization:

Laboratory Personnel:

(Signature)

Page 1 of 2

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions. (Signature)

Sample ID: 23120022-002 Priority: Normal

RECEIVED

Clean Harbours Cust Samp ID: Customer ID:

PM10 Test # 875 - Filter # AT85238

DEC 0 6 2023 Mober 4/23 Test 875 Clean Harbors Prepared by: Project: Date: Filter Shipping Record Filter IDs (1/2 mile north, Hwy 854) Ryley, AB T0B 4A0 Clean Harbors 780-663-2513 PO Box 390 # of Filters in Cassettes Todd Webb Filter Size Sent To: 47 mm

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegraville, AB T9C 1T4

CinnoTech	Canister ID: 32212 This cleaned canister meets or exceeds TO-15 Method	Sample ID: Fest	875
Proofed by: 150	Specifications On: SEP 2 8 2023	Sampled By: T. W	
	Recertified: nonths from evacuation or recertification date) tory Contact Number: 780-632-8403	Starting Vacuum: -27-3 "Hg	End Vacuum: Hg/psig

Sample ID: 23120022-001 Priority: Normal

Customer ID:

Clean Harbours

Cust Samp ID: VOCs and TNMOC Test # 875

TERMS AND CONDITIONS

The attached document entitled "Chain of Custody Form" is subject to the following Terms commencement of the Services shall be deemed acceptance of the terms and conditions by and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's

not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA 1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may

2.InnoTech Alberta will perform the Services in accordance with normal professional standards. INC. (hereinafter referred to as "InnoTech Alberta")

3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.

InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damaqe, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. be responsible for any damage, which is a natural or necessary result of any testing procedure.

forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items Alberta makes no representation that any similar or related untested samples or items would produce provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech the same results.

releases, public statements or announcements, whether written or oral relating to the Services or the 8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news esults thereof, without the prior written consent of InnoTech Alberta.

9. Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the reconncibility of the Client to arrange shipping and it is the reconncibility of the Client to arrange shipping and it is the reconncibility of the Client to arrange shipping and it is the reconncibility of the Client to arrange shipping and it is the reconncibility of the Client to arrange shipping and it is the reconncibility of the Client to arrange shipping and it is the reconncibility of the Client to arrange shipping and it is the connection of the Client to arrange shipping and it is the connection of the Client to arrange shipping and it is the connection of the Client to arrange shipping and it is the connection of the Client to arrange shipping and it is the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the Client to arrange shipping and the connection of the 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred insurance it deems necessary.

Sample ID: 23120022-003 Priority: Normal

HiVol Test # 875 - Filter # HVF-23-10-C Clean Harbours Cust Samp ID: Customer ID:

12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(a)be responsible for all costs associated with the handling, transportation and disposal of such

b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the nandling, transportation and disposal of such materials; and

c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions associated with the handling, transportation and disposal of such materials.

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.

14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on overdue interest at the same rate.

purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts 15.InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.

16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.

demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;

(b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or

(c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is InnoTech Alberta shall have no liability for any loss or damage to such property. 19. InnoTech Alberta required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. 18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for responsible for insuring all owned property directly or indirectly related to this Agreement and (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00)in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage 20. The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. while on InnoTech Alberta premises.

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters. 23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 24. This Quotation and rights and parties thereto shall be governed by and construed according 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.

the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Sample ID: 23120119-001 Priority: Normal

Customer ID: Clean Harbours

Vegreville, AB T9C 1T4 Highway 16A & 75 Street **Environmental Analytical Services**

> Email: EAS.Reception@innotechalberta.ca Phone: 780-632-8403

www.innotechalberta.ca

Email: Phone: If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC If neither filter exceeds its trigger weight, neither filter is analyzed for metals *If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals Special Instructions/Comments: Company: **Client Reporting Information** Trigger Weight for Analysis (HI-VOL): 92.3 mg Trigger Weight for Analysis (PM10): 1.25 mg Contact: Address: Clean Harbors Canada, Inc PO Box 390, 50114 Range Road 173, Yuha.Stan@cleanharbors.com Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828 Todd Webb or Stan Yuha Ryley, AB TOB 4A0 Cust Samp ID: VOCs and TNMOC Test Number: 873 Email: **Client Billing Information** PO #: Project ID: Phone: Contact: Test 876 Stephanie Dennis 0000238012 780-663-3828 Dennis.Stephanie@cleanharbors.com Confirm rush requests with InnoTech Alberta. Note: Rush service not available for all tests. Turnaround Time Date Received — Lab Use Only Normal (10 business days) Rush RECEIVED DEC 14 2023

FLI Falticulate Weight & Hierals				MITOLINE	י יאידס לממו גרי די ירומ חמווא	
ETT Darticulate Weight 8, motals	15:55	11/12/23	AT85100	DM10 filter	PM10 Quarter 4 Field Rlank	5
000	Total: 24.09 hrs					
Particulate Weight (& metals if over trigger weight)*	00:00	09/12/23		HI-VOL Filter	HI-VOL Test Number: 876	
	00:00	08/12/23	HVF-23-10-02			دى
over trigger weight)*	00:00	09/12/23	×	I MITO IIIICO	100000000000000000000000000000000000000	(
FLT Particulate Weight (& metals if	00:00	08/12/23	AT85237	DM10 filter	PM10 Test Niimber: 876	د د
VOC FAIRID & TINIVIOC	00:00	09/12/23		Calliote	Number: 876	/
VOC BANGS & THINADO	00:00	08/12/23	28956	Capictor	VOCs and TNMOC Test	_
Analysis Requested	From / To	From / To	Sampler ID	Description	Client Sample ID	Lab Sample No.
	(24 hour)	(dd/mm/yy)	Canister Number/	Sample Source/		
	Time Sampled	Date Sampled				

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions. Client Authorization: (Signature) **Laboratory Personnel:** (Signature)

F163-01

Sample ID: 23120119-001 Priority: Normal

Clean Harbours

Cust Samp ID: VOCs and TNMOC Test Number: 873

Canister ID: 28956 InnoTech This shared sprieters and the Tourse	Sample ID: Test 876
Proofed by: SEP 1 8 2023 Evacuated: OCT 2 3 2023 Recertified:	Sampled By: T. Webb
Evacuated: OCT 2 3 2023 Recertified: (Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Starting Vacuum: End Vacuum:

TERMS AND CONDITIONS

and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by The attached document entitled "Chain of Custody Form" is subject to the following Terms

not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta"). $1.\mathsf{Any}$ proposal contained herein is prepared for the consideration of the Client only. Its contents may

InnoTech Alberta will perform the Services in accordance with normal professional standards.

approximate and may be changed by InnoTech Alberta giving written notice to the Client. 3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is

be responsible for any damage, which is a natural or necessary result of any testing procedure. any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not being tested or for any damage, loss or expense caused by any delay in carrying out the test, including 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item

Client's Intellectual Property. shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other literary works, concepts, designs, processes, software, algorithms and inventions, including, without 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client

any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any corporation during the term of this Agreement and for a period of five (5) years after the date of that its employees, contractors and agents will not disclose the same to any other person, firm or 6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta Protection of Privacy Act (Alberta). level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure

provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce 7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items

releases, public statements or announcements, whether written or oral relating to the Services or the 8. The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news results thereof, without the prior written consent of InnoTech Alberta.

work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Records, test data, reports and samples, except where shipped to the Client after completion of the Retention and Disposition Schedule.

provincial, municipal, sales, use or goods and services tax. 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any

insurance it deems necessary or loss to items during shipping and it is the responsibility of the Client to arrange and nav for any by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage the item to the Client after testing and shall be responsible for all necessary incidental costs incurred responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning 11.Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be

> Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall: 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

handling, transportation and disposal of such materials; and

associated with the handling, transportation and disposal of such materials. (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions

days from the date of invoice, without deduction or set-off. 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear 13.The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30)

overdue interest at the same rate. interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied

of the information contained is at the Client's own risk. the results of these Services or items tested as is, and acknowledges that any use or interpretation statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts

suffered by the Client, including loss of anticipated profits. 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, time the item was submitted for testing; dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the (a)any dangerous defect or content in the item being tested, whether apparent or not, which demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of:

which are purported to be identical to the item tested; or (b)differences between those items actually tested and items previously or subsequently produced

third party following its return to the Client. (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a

The hold harmless shall survive this Agreement.

in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) shall maintain the following insurance: (i) commercial general liability insurance (including cross insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect supplement or add insurance coverage from time to time as may be required in its sole discretion. required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. liability, severability of interests, non-owned automobile liability) in the amount of two million dollars InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta against bodily injury, and property damage including loss of use thereof. Further, the Client 18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for

prior agreements relative to this transaction.

22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its 21. This Agreement represents the entire agreement between the parties and shall supersede all

while on InnoTech Alberta premises

strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters. obligations caused by circumstances beyond its control, including but not limited to acts of God,

23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section

the laws of the Province of Alberta. The parties hereby submit to the 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.24. This Quotation and rights and parties thereto shall be governed by and construed according TECE TURISDICTION THE Courts of

Sample ID: 23120119-001 Priority: Normal

Cust Samp ID: Customer ID:

VOCs and TNMOC Test Number: 873

Clean Harbours

Sample ID: 23120149-001 Priority: Normal

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

> Phone: 780-632-8403 Email: EAS.Reception@innotechalberta.ca

www.innotechalberta.ca

ĭ

Client Reporting Information =Cust Samp ID: Customer ID: VOCs and TNMOC Test #: 877 Clean Harbours

Company: Clean Harbors Canada, Inc Ryley, AB TOB 4A0 Todd Webb or Stan Yuha PO Box 390, 50114 Range Road 173,

Contact:

Address:

Email: Phone: Yuha.Stan@cleanharbors.com Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828

Special Instructions/Comments:

If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC

Trigger Weight for Analysis (HI-VOL): 93.1 mg

Trigger Weight for Analysis (PM10): 1.21 mg

If neither filter exceeds its trigger weight, neither filter is analyzed for metals

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

Email: Project ID: Phone: Contact: Test 877 Stephanie Dennis 780-663-3828

Dennis.Stephanie@cleanharbors.com

PO #: 0000238012

> X Normal (10 business days) **Turnaround Time**

Rush

Note: Rush service not available for all tests. Confirm rush requests with InnoTech Alberta.

Date Received - Lab Use Only

RECEIVED

)	
000000000000000000000000000000000000000	Total: 24.31 hrs					(
Particulate Weight (& metals if over trigger weight)*	00:00	15/12/23		HI-VOL Filter	HI-VOL Test Number: 877	5
	00:00	14/12/23	HVF-23-10-06	T		
over trigger weight)*	00:00	15/12/23		1 1111111111111111111111111111111111111		2
FLT Particulate Weight (& metals if	00:00	14/12/23	AT76602	PM10 filter	PM10 Test Number: 877	١
VOC FAIRIS & INVIDIO	00:00	15/12/23	9	Calliotti	Number: 877	_
VOC BANAS O TANADO	00:00	14/12/23	32261	Canictor	VOCs and TNMOC Test	_
Analysis Requested	From / To	From / To	Sampler ID	Description	Client Sample ID	Lab Sample No.
	(24 hour)	(dd/mm/yy)	Canister Number/	Sample Source/		
	Time Sampled	Date Sampled				

Client Authorization:

(Signature)

Laboratory Personnel:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Customer ID:

Clean Harbours

Cust Samp ID: VOCs and TNMOC Test #: 877

Filter Shipping Record

Date:

RECEIVED

DEC 19 2023

Sent To: Clean Harbors PO Box 390

Ryley, AB T0B 4A0

(1/2 mile north, Hwy 854)

Todd Webb

780-663-2513

Prepared by:

Project:

Clean Harbors

		2 11
AT7 6602 Tex 877	<u> </u>	47 mm
Filter IDs	# of Filters in Cassettes	Filter Size

Sample ID: 18+877 Sampled By: LWbb Starting Vacuum: End Vacu	Evacuated: UC1 10 2023 Recertified: (Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Proofed by: 150 on:	Canister ID: 37197 3226/ InnoTech ALBERTA This cleaned canister meets or exceeds TO-15 Method
Test 877 Tuesdo Find Vacco Fig. — S		,	
			ID: 18t 877

Sample ID: 23120149-001 Priority: Normal

Customer ID: Clean Harbours
Cust Samp ID: VOCs and TNMOC Test #. 877

Sample ID: 23120149-001 Priority: Normal

{00004084;2}
TERMS AND CONDITIONS

and Conditions, unless otherwise specifie Customer ID: The attached document entitled "Chain

commencement of the Services shall be Cust Samp ID:

Clean Harbours

VOCs and TNMOC Test #: 877

INC. (hereinafter referred to as "InnoTech Alberta"). not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA 1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may

2.InnoTech Alberta will perform the Services in accordance with normal professional standards

approximate and may be changed by InnoTech Alberta giving written notice to the Client. The delivery time for performance of the Services (as set out on the front page of this Quotation) is

be responsible for any damage, which is a natural or necessary result of any testing procedure. any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not being tested or for any damage, loss or expense caused by any delay in carrying out the test, including InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client.

Client's Intellectual Property. prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other literary works, concepts, designs, processes, software, algorithms and inventions, including, without 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and

any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or corporation during the term of this Agreement and for a period of five (5) years after the date of that its employees, contractors and agents will not disclose the same to any other person, firm or 6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure Protection of Privacy Act (Alberta). level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any

provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech the same results. Alberta makes no representation that any similar or related untested samples or items would produce 7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items

8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news results thereof, without the prior written consent of InnoTech Alberta. releases, public statements or announcements, whether written or oral relating to the Services or the

work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records 9. Records, test data, reports and samples, except where shipped to the Client after completion of the Retention and Disposition Schedule.

provincial, municipal, sales, use or goods and services tax. 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any

or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage insurance it deems necessary. the item to the Client after testing and shall be responsible for all necessary incidental costs incurred responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be

> Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall: 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the handling, transportation and disposal of such materials; and

(c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) associated with the handling, transportation and disposal of such materials.

14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear days from the date of invoice, without deduction or set-off.

overdue interest at the same rate. interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied,

of the information contained is at the Client's own risk. the results of these Services or items tested as is, and acknowledges that any use or interpretation purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any

suffered by the Client, including loss of anticipated profits. 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

time the item was submitted for testing; dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, (a)any dangerous defect or content in the item being tested, whether apparent or not, which

which are purported to be identical to the item tested; or (b)differences between those items actually tested and items previously or subsequently produced

third party following its return to the Client. (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a

The hold harmless shall survive this Agreement.

insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. supplement or add insurance coverage from time to time as may be required in its sole discretion. in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) shall maintain the following insurance: (i) commercial general liability insurance (including cross responsible for insuring all owned property directly or indirectly related to this Agreement and against bodily injury, and property damage including loss of use thereof. Further, the Client while on InnoTech Alberta premises. 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in liability, severability of interests, non-owned automobile liability) in the amount of two million dollars InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta 18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, obligations caused by circumstances beyond its control, including but not limited to acts of God, sabotage, fire, flood, explosion, earthquake or other disasters. 22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its

2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client. 23.InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section

the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta. 24. This Quotation and rights and parties thereto shall be governed by and construed according

HAIN OF CUSTODY FORM Sample ID: 24010027-001 Priority: Normal

Clean Harbours Customer ID:

VOCs and TNM Cust Samp ID:

| Client Reporting Inform Clean Harl Company:

Ryley, AB PO Box 39 Todd Web Address: Contact: 780-663-2 Phone:

Webb.Too Yuha.Star

Email:

Special Instructions/Comments:

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

If neither filter exceeds its trigger weight, neither filter is analyzed for metals

If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC

Trigger Weight for Analysis (HI-VOL): 92.2 mg Trigger Weight for Analysis (PM10): 1.22 mg

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Email: EAS.Reception@innotechalberta.ca Phone: 780-632-8403

www.innotechalberta.ca

INMOC lest#8/8 rmation	Client Billing	Client Billing Information	Turnaround Time
arbors Canada, Inc	Contact:	Stephanie Dennis	X Normal (10 business days)
390, 50114 Range Road 173, B TOB 4A0	Phone:	780-663-3828	Rush
ebb or Stan Yuha	Email:	Dennis.Stephanie@cleanharbors.com	Note: Rush service not available for all tests.
-2513 or 780-663-3828	Project ID: Test 878	Test 878	Confirm rush requests with InnoTech Alberta.
odd@cleanharbors.com, an@cleanharbors.com	PO #:	0000238012	

Date RECEIVED Use Only. RECEIVED	JAN 04 2024	A de
Date Received – L	NY.	4

Lab Sample No.	Client Sample ID	Sample Source/ Description	Canister Number/ (dd/mm/yy) Sampler ID From / To	Date Sampled (dd/mm/yy) From / To	Time Sampled (24 hour) From / To	Analysis Requested
	VOCs and TNMOC Test	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32249	20/12/23	00:00	
	Number: 878	Callister		21/12/23	00:00	VOC PAIVIS & LINIVIOC
	070 :20dm: M +20T 0700	DN 10 6:1+0.5	AT85099	20/12/23	00:00	FLT Particulate Weight (& metals if
	MITO LEST NUTIDEL: 0/0	אודס וווע	8	21/12/23	00:00	over trigger weight)*
		9	HVF-23-10-04	20/12/23	00:00	
	HI-VOL Test Number: 878	HI-VOL Filter		21/12/23	00:00	Particulate Weight (& metals if over trigger weight)*
					Total: 24.56 hrs	(200
	7 4 6	01				

Client Authorization:

(Signature)

Laboratory Personnel:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

F163-01

Sample ID: 24010027-002 Priority: Normal

Customer ID: Cust Samp ID:

Clean Harbours PM10 Test # 878 - Filter # AT85099

Clean Harbors

Sent To:

PO Box 390

RECEIVED JAN 04 2024

基础的现在分词的现在分词形式的

Filter Shipping Record

Date:

November 2/23

Project:

Clean Harbors

Prepared by:

(1/2 mile north, Hwy 854) Ryley, AB T0B 4A0

780-663-2513

Todd Webb

	404 878						
Filter IDs							
	AT85099						
# of Filters in Cassettes	-					9	
Filter Size	47 mm						

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Canister ID: 32249

Let 878

Sample ID:

InnoTech
ALBERTA This cleaned canister meets or exceeds TO-15 Method
Specifications

Drt 1 8 2023 on: Proofed by: / S 🛱

Recertified: Evacuated: 0CT 2 3 2023

(Use within: 3 months from evacuation or recertification date)

Laboratory Contact Number: 780-632-8403

1 Was Sampled By:

Starting Vacuum:

"Hg

-27.4

"Hg/ psig End Vacuums. - 6

Clean Harbours Customer ID:

VOCs and TNMOC Test #878 Cust Samp ID:

Sample ID: 24010027-001 Priority: Normal

TERMS AND CONDITIONS

The attached document entitled "**Chain of Custody Form**" is subject to the following Terms and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by the Client.

1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").

2.InnoTech Alberta will perform the Services in accordance with normal professional standards.

3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.

4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure.

5.For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Portection of Privacy Act (Alberta).

7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce the same results.

8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.

9. Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and nav for any insurance it deems necessary.

Sample ID: 24010027-003 Priority: Normal

Customer ID: Clean Harbours
Cust Samp ID: HiVol Test # 878 - Filter # HVF-23-10-04

12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(a)be responsible for all costs associated with the handling, transportation and disposal of such materials:

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the handling, transportation and disposal of such materials; and

(c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions associated with the handling, transportation and disposal of such materials.

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.

14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on overdue interest at the same rate.

15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.

16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.

17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;

(b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or

(c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta shall maintain in following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars (\$2,000,000.00) per claim, and errors and omissions insurance in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect while on InnoTech Alberta premises.

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.

23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.

24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Sample ID: 24010029-001 Priority: Normal

Clean Harbours

Customer ID:

HAIN OF CUSTODY FORM

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca Phone: 780-632-8403

Confirm rush requests with InnoTech Alberta. Note: Rush service not available for all tests. X Normal (10 business days) **Turnaround Time** Rush Dennis.Stephanie@cleanharbors.com Stephanie Dennis 0000238012 780-663-3828 Client Billing Information **Test 879** Project ID: Contact: Phone: Email: PO #: PO Box 390, 50114 Range Road 173, Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828 Yuha.Stan@cleanharbors.com VOCs and TNMOC Test #879 Clean Harbors Canada, Inc Todd Webb or Stan Yuha Ryley, AB T0B 4A0 CIIENT REPORTING Information Company: Cust Samp ID: Address: Contact: Phone: Email:

Special Instructions/Comments:

Date R

If neither filter exceeds its trigger weight, neither filter is analyzed for metals	If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC	Trigger Weight for Analysis (PM10): 1.21 mg	Total and Marie Land American (111 MOL). Of E man
---	---	---	---

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

		II	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		I	
		ı	
		I	
		I	
		۱	
		I	
		I	
		I	
		ı	
		۱	
		۱	
		۱	
		١	
		۱	
		ı	
		ı	
		ı	
		ı	
		ı	
		ı	
		ı	
		ı	
•			
ı		۱	
)			
		ı	
5		ı	
1		ı	
		ı	
		I	
5		I	
5		١	
-		I	
3		I	
		١	
•		١	
5		١	
•		1	
۵		1	
,			
5			
Q			I
B		I	1
		I	-
	_		

				Date Sampled	Time Sampled	
		Sample Source/	Canister Number/	(dd/mm/yy)	(24 hour)	
Lab Sample No.	Client Sample ID	Description	Sampler ID	From / To	From / To	Analysis Requested
	VOCs and TNMOC Test		29004	26/12/23	00:00	COMME 9 SMARG COM
	Number: 879	Canister		27/12/23	00:00	VOC PAINIS & INIVIOC
			AT83614	26/12/23	00:00	FLT Particulate Weight (& metals if
	PMILU LEST NUMBER: 879	PINITO III CE		27/12/23	00:00	over trigger weight)*
			HVF-23-10-09	26/12/23	00:00	
	HI-VOL Test Number: 879	HI-VOL Filter		27/12/23	00:00	Particulate Weight (& metals if over trigger weight)*
				-	Total: 24.37 hrs	70
					N.	

Client Authorization:

(Signature)

Laboratory Personnel:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Sample ID: 24010029-002 Priority: Normal

Clean Harbours PM10 Test # 879 - Filter # AT83614 Customer ID: Cust Samp ID:

Clean Harbors Sent To: Ryley, AB T0B 4A0

PO Box 390

(1/2 mile north, Hwy 854)

780-663-2513 Todd Webb

Filter Shipping Record

RECEIVED JAN 04 2024

Date:

Project:

Prepared by:

Clean Harbors

	Test 879					
Fitter IDs	ATB3614					
# of Filters in Cassettes	←					
Filter Size						

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

- T	0	I
InnoTeck	0	ん InnoTech ALBERTA

Canister ID: 29004

Sample ID:

This cleaned canister meets or exceeds TO-15 Method Specifications

AUG 1 6 2023 Proofed by:_

on:

Recertified: Evacuated: MnW n 6 2023

(Use within: 3 months from evacuation or recertification date)

Sampled By:

Starting Vacuum:

gH"_

End Vacuum:

"Hg/psig

-27.1 Laboratory Contact Number: 780-632-8403

Sample ID: 24010029-001 Priority: Normal

VOCs and TNMOC Test#879 Clean Harbours Cust Samp ID: Customer ID:

The attached document entitled "**Chain of Custody Form**" is subject to the following Terms and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by

1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").

2.InnoTech Alberta will perform the Services in accordance with normal professional standards.

3.The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.

4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure.

5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or beligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce the same results.

8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.

9. Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

10.Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any insurance it deems necessary.

Sample ID: 24010029-003 Priority: Normal

Customer ID: Clean Harbours

Cust Samp ID: HiVol Test # 879 - Filter # HVF-23-10-09

12. Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the handling, transportation and disposal of such materials; and

nandling, transportation and disposal of such materials, and (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions

associated with the handling, transportation and disposal of such materials.

13.The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30)

days from the date of invoice, without deduction or set-off.

14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on overdue interest at the same rate.

15.InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.

16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.

17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;

(b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or

(c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars (\$2,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above.

while on InnoTech Alberta premises.

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.

23.InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.

24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Appendix E December Quarterly Audit

Quarterly Audit Partisol FRM

Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: December 13, 2023

Clean Harbors

Table of Contents

1.	Introd	duction	1
2.	Audit	Procedure	1
3.	Audit	Results	1
	3.1	Siting Location Audit Results (EPA Station ID 00010348-I-1)	1
	3.2	Pressure and Temperature Audit Results (EPA Station ID 00010348-I-1)	2
	3.3	Leak Check Results (EPA Station ID 00010348-I-1)	2
		3.3.1 Automatic Leak Check	
	3.4	Flow Audit (EPA Station ID 00010348-I-1)	3
	3.5	Instrument Condition and Recommendations (EPA Station ID 00010348-I-1)	3
		3.5.1 Recommendations	3
Table	Ind	lex	
Table	3.1	AMD Requirements vs. Current Partisol Sampler Location	2
Table	3.2	Reference Results vs. Partisol Sampler Readings	2
Appen	dix	Index	
Apper	ndix A	Quarterly Audit Form	
Apper	ndix B	Calibration Certificates	

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on December 13, 2023. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located at the Ryley Lift Station, Secondary Road 854, approximately 350 metres southeast of the Facility (53°17'52.66"N and 112°24'57.87"W).

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2016 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (EPA Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53°17'52.66"N and 112°24'57.87"W.
- The distance from the nearest roadway is 21 m.

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minir	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Pressure and Temperature Audit Results (EPA Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	3.8	3.49	0.3	<u>+</u> 2°C	Pass
Barometric Pressure (mmHg)	695.0	694.1	0.9	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	4.90	4.73	0.2	<u>+</u> 2°C	Pass
Flow (L/min)	16.7	16.7	0.0	<u>+</u> 1.0 L/min	Pass

Note: A slight fail was observed based on the flow equation check criteria. However, as shown in Table 3.2, the internal flow check passed during the physical audit. GHD will monitor this closely over the following months and work to resolve this issue for the next audit.

3.3 Leak Check Results (EPA Station ID 00010348-I-1)

3.3.1 Automatic Leak Check

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop threshold of 127 mmHg per minute. The Partisol Sampler passed the requirements outlined in the service manual with a pressure drop of 12 mmHg per minute during the audit.

3.3.2 External Manual Leak Check

GHD also performs an external manual leak check on the Partisol Sampler as part of the quarterly audit. The external manual leak check measures the pressure drop on a vacuum gauge located on the sampler. The pressure drop may not exceed more than 8.5 inHg (216 mmHg) over a 30-second span. The Partisol Sampler passed the requirements of the service manual with a pressure drop of 0.5 inHg in a 30-second span.

3.4 Flow Audit (EPA Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (EPA Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- · Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

Appendices

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Date		12/13/2023		Weather Cond.:	Pa	rtial Clo	ud
Owner		Clean Harbors		Start Time:	12:13:00 AM		
Station Name		Ryley Lift Station		End Time:	1:	07:00 A	М
Parameter		PM ₁₀		Performed By:		. Penny	1
Partisol FRM Mod	lel 2000 Identification	on		Sampler Data			
Make/Model:	R & P Partisol FRN	<i>I</i> 2000		Temperature:	3.8		
Unit ID:	Ryley Lift Station			Pressure:	695		
S/N:	200FB209860905			Flow Set Point:	16.7 L/min		
GHD Refere	nce Standards						
_	F	low	Pressure	Temperature	Manome	eter	
Make:	AirN	Metrics	TSI	Fluke	Dwye	r	
Model:	F	RM	9555-X / 960	1551A Ex	475-0-F	M	
Serial Number:	FRI	M1218	9555X1002005	3520009	N/A		
Calibration Date:	5/17	7/2016	12/20/2022	7/4/2023	12/1/20	22	
<u>Aud</u>	it Data						
		Sampler Data	Reference Data	Difference	Pass/F	ail	Units
Ambient Tempera	ture (+/- 2 °C)	3.80	3.49	0.3	Pass	i	°C
	ure (+/- 10 mmHg)	695.00	694.10	0.9	Pass	i	mmHg
Filter Temperature	•	4.90	4.73	0.2	Pass	i	°C
Flow (+/- 1.0 Litres	s/min)	16.70	16.70	0.0	Pass	i	Litres/min
	<u>c Check</u> eck (-8.5 inHg)						
		Initial Pressure	Final Pressure	Pressure Drop	Pass/F	ail	Units
		-13.50	-13.00	-0.50	Pass	i	inHg
Automatic Ch	eck (-127 mmHg)						
Leak	check was performed	d in automatic mode,	sampler indicated:	12 mmHg/min	Pass	i	mmHg/mir
As Fou	nd/As Left		Yes/No		As Found	As Left	Pass/Fail
	mperature require ad	•	No		3.8	3.8	Pass
	pressure require adj		No		695	695	Pass
	rature require adjust	ment?	No		4.9	4.9	Pass
Did the flow audit r	equire adjustment?		No		16.7	16.7	Pass

Flow Equation Set Point	Actual Flow (Qact)	Absolute Difference	Pass/Fail	Manometer (DH)	2.41 "H2O	
(lpm)	(lpm)	(lpm)	(<u>+</u> 1 lpm)	Actual Temp (Tact)	276.64 °K	3.5°C
				Actual Pres (Pact)	0.925 bar	
16.7	12.4	4.3	Fail	Actual Pres (Pact)	27.33 inHg	
FTS Linear Regre	ssion Constants			$\sqrt{\Lambda H \times Tact}$		
(mflo) =	0.4452		Qact = mflo	$\times \frac{\sqrt{\Delta H \times Tact}}{Pact} + bflo$		
(bflo) =	0.4430			Pact		

Appendix B Calibration Certificates

MONTREAL

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

EDMONTON

9730 32 Avenue NW Edmonton, AB T6N 1L9

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 www.itm.com • 1.800.561.8187 • information@itm.com

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

Calibration Certificate	0

Customer: GHD Ltd.

Certificate: C593374-00-01

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 4-Jul-2023

Due Date: 4-Jul-2024

Serial: 3520009

Unit ID: TIIM-CAL-001

Calibration Conditions

Temperature: 22.8°C Humidity: 41.2 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

000

Unit ID	<u>Manufacturer</u>	Model	Cal Date	Due Date
I-1585	Hart Scientific	1521/5627A	20-Apr-2023	20-Apr-2024
I-1969	Ametek	RTC-157A	27-Feb-2023	27-Feb-2024

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties iven in this report are based on a coverage factor of k-2 corresponding to a confidence level of approximately 95%

Calibrated by: L. Fuentebella

Luke Fuentebella

©Certificate: C593374-00-01

UAsset: ITM0003733

Calibration Certificate

DEFENDED TO SERVICE STATEMENT OF THE PROPERTY OF

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

16975 Leslie Street Newmarket, ON L3Y 9A1 CALGARY

TORONTO

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

EDMONTON

9730 32 Avenue NW Edmonton, AB T6N 1L9

www.itm.com • 1.800.561.8187 • information@itm.com

Test Results

Procedure: FLUKE 1551A EX_RTC-157A, Fluke 1523 Rev: 1

Data Type: As Found Results: Pass

Test Description TEMPERATURE ACCURACY	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
-49.9540 °C		-49.982 °C	-50.004 °C	-49.904 °C	Pass	9.0e-003 °C
-24.9510 °C		-24 999 °C	-25.001 °C	-24.901 °C	Pass	9.0c-003 °C
0 0020 °C		-0.022 °C	-0.048 °C	0.052 °C	Pass	9.0c-003 °C
100 0140 °C		99.993 °C	99.964 °C	100.064 °C	Pass	9.0e-003 °C
154,9970 °C		154.986 °C	154,947 °C	155.047 °C	Pass	9.0e-003 °C

Certificate: C593374-00-01

Calibration Certificate

NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press	mp, °K:	17/2016 295.5 1.0000	Orific Pri Si Mand	÷	1218- 774300 1218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15		er ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Re	gression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r ² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	ust be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$
 $Q_{act} = actual flowrate, liters per min $\Delta H = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres$$

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$
 $P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet$

Airmetrics

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

www.itm.com information@itm.com

CALGARY

VANCOUVER

1282 Cliveden Av #209, 4615 112 Ave SE 1.800.561.8187 Delta, BC V3M 6G4 Calgary, AB T2C 5J3 **Calibration Certificate** Customer: GHD Ltd. Certificate: C542161-00-01 Unit Identification Serial: N/A Manufacturer: Dwyer Unit ID: MAN-CAL-001 Model: 475-0-FM Description: Digital Manometer Calibration Conditions Calibration Date

Calibration Date: 1-Dec-2022

Due Date: 1-Dec-2023

Temperature: 21.7°C Humidity: 15 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used **Due Date** Cal Date Model Manufacturer Unit ID 12-Mar-2023 12-Sep-2022 750P01 Fluke CAL0224

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: D. Gano

Certificate: C542161-00-01 Asset: ITM0017905

Calibration Certificate

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

		X UA1 Nev	vmarket, ON L3Y 9A1		Regina, SK S4N 5X4	
M INSTRUMENTS INC	CALGARY #209, 4615 112 Ave SE Calgary, AB T2C 5J3	V.	ANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4	info	www.itm.com information@itm.com 1.800.561.8187	
Test Besults						
Procedure: Pressure Gauge 10.00	IN.W.C 0.5% FS /750P01	Rev: 1.1				
Data Type: As Found Results: Pa	ass					
Test Description True Value	ue Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert	
Tolerance used (additive if more than or	ne listed):					
0.5% of full scale						
UUT is set to the nominal value, Reading	g is the					
actual pressure read by the system instr	ument.		-	-	4.65 002 in H2O	
1.000 inH2O	1.003 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.6e-002 INH2O	
2.000 inH2O	1.983 inH2O	1.950 inH2O	2.050 inH2O	Pass	1.06-002 inH2O	
4.000 inH2O	3.982 inH2O	3.950 inH2O	4.050 InH2O	Pass Pass	1 6e-002 inH2O	
6.000 inH2O	5.978 inH2O	5,950 inH2O	6.050 INH2O	Pace	1.6e-002 inH2O	
8.000 inH2O	7.969 inH2O	7.950 inH2O	0.000 InH2O	Pass	1.6e-002 inH2O	
10.000 inH2O	9.974 inH2O	9.950 INH2O	10.030 111720	1 433		
Test Results Procedure: Pressure Gauge 10.00 Data Type: As Found Results: Pa Test Description True Valuation Tolerance used (additive if more than or 0.5% of full scale UUT is set to the nominal value, Reading actual pressure read by the system instraction in the control of						
Certificate: C542161-00-01 Asset: ITM0017905						
Certificate: C542161-00-01 Asset: ITM0017905	Cali	ibration Certificate			Page	

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

www.itm.com information@itm.com 1.800.561.8187

Calibration Certificate

Customer: GHD LTD

Certificate: C542157-00-01

Unit Identification

Manufacturer: TSI Model: 9555-X / 960 Description: VelociCalc

Calibration Date

Calibration Date: 20-Dec-2022

Due Date: 20-Dec-2023

Serial: 9555X1002005

Unit ID: VEL-CAL-002

Calibration Conditions

Temperature: 22.5°C Humidity: 34.8 %

Barometric Pressure: 103.0kPa

General Information

Remark: N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
M-012	Airflow Development	83FSL	******* No Cal	ibration Required **********
M-110	Love Controls	HM3531DLF600	11-Oct-2022	11-Oct-2023
M-115	Rotronic	M22W	10-Jul-2022	10-Jul-2023
M-130	Fluke	1552A	13-May-2022	13-May-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: R. Chaaya

Certificate: C542157-00-01 Asset: ITM0071374

Approved b

Calibration Certificate

Page 1/2

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

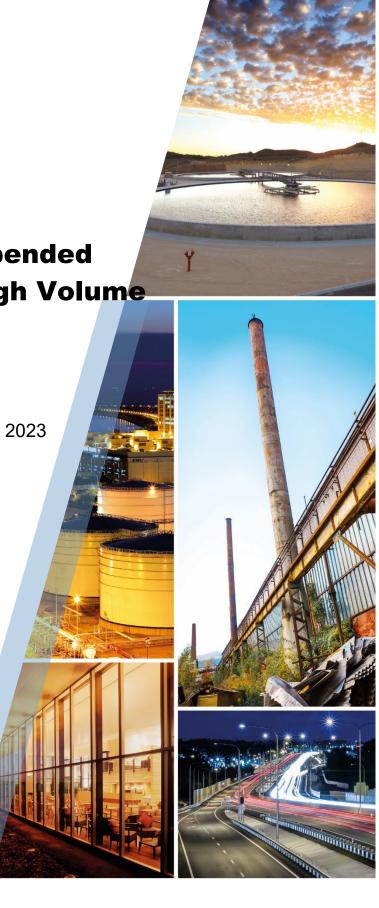
		CALGARY		VANCOUVER		www.itm.com
INSTRUMENT		#209, 4615 112 Ave Calgary, AB T2C 5J:	SE 3	1282 Cliveden Av Delta, BC V3M 6G4	i	nformation@itm.cor 1.800.561.8187
Test Results						
Procedure: TSI 9555-I		e Rev: 2				
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
TEMPERATURE TEST ACCU	JRACY °C					
0.0 °C		0.1 °C	-0.3 °C	0.3 °C	Pass	1.20.001.00
25.0 °C		24.9 °C	24.7 °C	25.3 °C	Pass	1.2e-001 °C 1.2e-001 °C
60.0 °C		60.0 °C	59.7 °C	60.3 °C	Pass	1.2e-001 °C
VELOCITY TEST ACCURAC	Y ft/min					
100 ft/min		99 ft/min	97 ft/min	103 ft/min	Pass	5.8e-001 t/min
200 ft/min		201 ft/min	194 ft/min	206 ft/min	Pass	5.8e-001 t/min
300 ft/min		303 ft/min	291 ft/min	309 ft/min	Pass	5.8e-001 t/min
400 fVmin		402 ft/min	388 ft/min	412 ft/min	Pass	5.8e-001 t/min
500 fVmin		496 ft/min	485 ft/min	515 ft/min	Pass	5.8e-001 t/min
750 fVmin		754 ft/min	727 ft/min	773 ft/min	Pass	5.8e-001 t/min
1000 fVmin		993 ft/min	970 ft/min	1030 ft/min	Pass	5.8e-001 t/min
1500 ft/min		1507 ft/min	1455 ft/min	1545 ft/min	Pass	5.8e-001 t/min
2000 ft/min		2018 ft/min	1939 ft/min	2061 ft/min	Pass	5.8e-001 t/min
3000 ft/min		3005 ft/min	2910 ft/min	3090 ft/min	Pass	5.8e-001 t/min
4000 ft/min 5000 ft/min		3986 ft/min 5011 ft/min	3880 ft/min 4850 ft/min	4120 ft/min 5150 ft/min	Pass	5.8e-001 t/min 5.8e-001 t/min
Test Results Procedure: TSI 9555-F Data Type: As Found Test Description TEMPERATURE TEST ACCU 0.0 °C 25.0 °C 60.0 °C VELOCITY TEST ACCURACT 100 ft/min 200 ft/min 300 ft/min 1500 ft/min 1500 ft/min 2000 ft/min 3000 ft/min 3000 ft/min 5000 ft/min 5000 ft/min 5000 ft/min						
Certificate: C542157-00-Asset: ITM0071374			ibration Certificate			Page 2/
		e may not be reproduced etre reproduit autrement	, except in full, unless	with the permission	of ITM Instrume	ents Inc.

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Pooya Shariaty Pooya.Shariaty@ghd.com 403.538.7479

www.ghd.com


Quarterly Total Suspended Particulate (TSP) High Volume

Sampler Calibration

Clean Harbors 50114 Range RD. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: December 13, 2023

Clean Harbors

Table of Contents

	1.	Intro	oduction	1
	2.	Aud	lit Procedure	1
	3.	Aud	lit Results	1
		3.1	Siting Location Audit Results	1
		3.2	Leak Check Procedure	3
			3.2.1 Leak Check Results	3
		3.3	Flow Audit Results	4
		3.4	Instrument Condition and Recommendations	4
Γal	ble	In	dex	
	Table	3.1	AMD Requirements vs. Facility Site Station Location	2
	Table	3.2	AMD Requirements vs. Ryley School Station Location	2
	Table	3.3	AMD Requirements vs. Highway 854 Lift Station Location	3

Appendix Index

Appendix A Quarterly Audit Form

Appendix B Calibration Certificate

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Total Suspended Particulate (TSP) High Volume Calibration Audit at 50114 Range Road 173 Ryley, Alberta (Facility), 5211 - 52 Ave, Ryley, Alberta (School), and Secondary Road 854, approximately 350 metres southeast of the Facility (Lift Station) on December 13, 2023. The Quarterly Audit was conducted on three Tisch TSP High Volume Samplers (Hi-Vol Samplers). The Facility Site Station (EPA Station ID 00010348-I-2) Sampler is located against the Facility perimeter fence, north of the vehicle staging road (53°18'13.11"N and 112°25'5.81"W). The Ryley School Station (EPA Station ID 00010348-I-3) Sampler is located on the roof of the Ryley School (53°17'28.99"N and 112°25'55.81"W). The Highway 854 Lift Station (EPA Station ID 00010348-I-1) Sampler is located at the Ryley Lift Station, Secondary Road 854, approximately 350 metres southeast of the Facility (53°17'52.66"N and 112°24'57.87"W).

2. Audit Procedure

The TSP Samplers were audited in accordance with the instrument manual, the Clean Harbors Ryley Enhanced Ambient Air Quality Monitoring Program (AQMP) and the Alberta Air Monitoring Directive, 2016 (AMD). The AQMP requires that the calibration of equipment be completed on a quarterly basis. GHD performed a siting location audit, leak audit, 5-point flow calibration audit and evaluation of instrumentation and provided recommendations.

Below is a summary of the tasks performed on each Sampler:

- Siting Location Audit
- Leak Audit
- 5-Point Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field forms can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results

The siting locations of the Hi-Vol Samplers meet the requirements of Chapter 3, Page 8, Table 5 of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the Sampler locations.

Facility Site Station

- The current coordinates of the Facility Sampler is 53°18'13.11"N and 112°25'5.81"W.
- The distance from the nearest roadway is ~10 metres (m).

Ryley School Station

- The current coordinates of the School Sampler are 53°17'28.99"N and 112°25'55.81"W.
- The distance from the nearest roadway is ~5 m.

Highway 854 Lift Station

- The current coordinates of the List Station Sampler are 53°17'52.66"N and 112°24'57.87"W.
- The distance from the nearest roadway is ~5 m.

Table 3.1 AMD Requirements vs. Facility Site Station Location

Site Characteristics	AMD Requirements		Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maxim	num 15 m	Meets Requirement	4 m abg
Other Requirements	a. Distance from a greater than 2. height of the ol the sampler.	5 times the	Meets Requirement	>2.5 times
	b. At least 2 m from samplers or inlinerates greater the 200 litres (L) po	ets with flow nan	Meets Requirement	None
	or at least 1 m any other samp with flow rates equal of 200 L	olers or inlets less than or	Meets Requirement	None
	c. Unrestricted air to four wind qu		Meets Requirement	Three to four Unrestricted Quadrants

Table 3.2 AMD Requirements vs. Ryley School Station Location

Site Characteristics	AMD Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maximum 15 m	Meets Requirement	4 m abg
Other Requirements	a. Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b. At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute.	Meets Requirement	None
	or at least 1 m apart from any other samplers or inlets	Meets Requirement	None

Table 3.2 AMD Requirements vs. Ryley School Station Location

Site Characteristics	AMD Requirements	Current Location	Specification
	with flow rates less than or equal of 200 L per minute		
	c. Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

Table 3.3 AMD Requirements vs. Highway 854 Lift Station Location

Site Characteristics	AMD Requirements		Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maximum 15 m		Meets Requirement	4 m abg
	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
Other Requirements	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute.	Meets Requirement	None
		or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Leak Check Procedure

GHD performed a leak rate pre-inspection of each Sampler by making sure all gaskets were in place and in good condition, all connections are secure and not over tightened and inspected for damaged components. The leak rate audit was conducted by installing the calibrator orifice plate and warming up the sampler to normal operating temperature. The orifice plate holes and pressure tap holes were then covered for 30 seconds. Leakage was determined by listening for a "high-pitched squealing" sound made by escaping air.

3.2.1 Leak Check Results

Facility Site Station

The Facility Site Station Sampler passed the requirements of manufacturer's requirement for Leak Rate Audit.

Ryley School Station

The Ryley School Station Sampler passed the requirements of manufacturer's requirement for Leak Rate Audit.

Highway 854 Lift Station

The Lift Station Sampler passed the requirements of manufacturer's requirement for Leak Rate Audit.

3.3 Flow Audit Results

The 5-point flow audit was completed in accordance with the AQMP, the AMD and procedures outlined in the manufacturer's manual. The Facility Sampler, School Sampler, and Lift Station Sampler field audit forms are provided in Appendix A.

Facility Site Station

The Facility Site Station Sampler passed the 10 percent tolerance at 40 cubic feet per minute (CFM) as specified in the AQMP.

Ryley School Station

The Ryley School Station Sampler passed the 10 percent tolerance at 40 cubic feet per minute (CFM) as specified in the AQMP.

Highway 854 Lift Station

The Lift Station Sampler passed the 10 percent tolerance at 40 cubic feet per minute (CFM) as specified in the AQMP.

3.4 Instrument Condition and Recommendations

The Facility Site Sampler, Ryley School Sampler, and Lift Station Sampler were visually and functionally inspected on the audit day. Audit recommendations are listed below:

- The high volume motors were inspected at all locations, they were in good working condition when GHD arrived on site.
- Sample filter pans were cleaned.
- Pressure tap tubing in fair condition.
- All seals, gaskets and fittings are in good condition (no action required).
- Filter holder and screen in good condition (no action required).
- Main power connection wire in good condition (no action required).

All of Which is Respectfully Submitted,

GHD

Pooya Shariaty, Ph.D, P.Eng.

Appendices GHD | Quarterly Total Suspended Particulate (TSP) High Volume Sampler Calibration | 11114644 (67)

Appendix A Quarterly Audit Forms

Site and Calibration Information

Site <u>Calibration Orifice</u>

Location: Facility Sampler Make: Tisch Environmental

 Date: Dec 13, 2023
 Model: TE-5028A

 Tech.: A. Penny
 Serial: 1203

 Sampler: TE-5170V
 Qa Slope (m): 0.97323

 Serial #: P8580 TSP VFC
 Qa Int (b): -0.01459

 VFC G-Factor: 0.0909523500
 Calibration due date: 02/20/24

Ambient Conditions

Temp (deg F): 34.90
Ta (deg K): 275
Barometric Press (in Hg): 27.31

Ta (deg C): 1.6 Pa (mm Hg): 693.7

Calibration Information

Run <u>Number</u>	Orifice <u>"H2O</u>	Qa <u>m3/min</u>	Sampler <u>"H2O</u>	Pf mm Hg	Po/Pa	Calculated <u>m3/min</u>	% of <u>Diff</u>
1	3.41	1.209	5.99	11.179	0.984	1.242	2.81
2	3.32	1.193	6.36	11.870	0.983	1.241	4.02
3	3.28	1.186	7.68	14.333	0.979	1.236	4.30
4	3.23	1.177	8.77	16.367	0.976	1.233	4.76
5	3.20	1.171	10.46	19.521	0.972	1.227	4.69

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	34.90
Average Temperature During Sampling Duration (Deg K)	274.61
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.31
Average Barometric Pressure During Sampling (mm Hg)	693.67
Enter Clean Filter Sampler Inches of Water	3.41
Enter Dirty Filter Sampler Inches of Water	3.20
Average Filter Sampler (mm Hg)	6.17
Enter Total Runtime in Hours (xx.xx)	0.25
	Po/Pa · 0 991

Po/Pa: 0.991

Calculated Flow Rate (m3/min): 1.252 Total Flow (m3): 18.78

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept)

Pressure Ratio (Po/Pa) = 1-Pf/Pa

Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

Serial #: P8581 TSP VFC

Site and Calibration Information

<u>Site</u> **Calibration Orifice**

Location: Ryley School Sampler Make: Tisch Environmental

Date: Dec 13, 2023 Model: TE-5028A Tech.: A. Penny **Serial:** 1203 Sampler: TE-5170V **Qa Slope (m):** 0.97323

Qa Int (b): -0.01459**VFC G-Factor:** 0.0906771980 Calibration due date: 02/20/24

Ambient Conditions

Temp (deg F): 34.0 **Ta (deg K):** 274 Barometric Press (in Hg): 27.34 Ta (deg C): $1 \cdot 1$ Pa (mm Hg): 694.4

Calibration Information

Run Number	Orifice <u>"H2O</u>	Qa m3/min	Sampler "H2O	Pf mm Hg	Po/Pa	Calculated m3/min	% of <u>Diff</u>
1	3.41	1.207	5.86	10.936	0.984	1.242	2.90
2	3.36	1.198	6.64	12.392	0.982	1.239	3.42
3	3.27	1.182	7.67	14.314	0.979	1.235	4.48
4	3.23	1.175	8.78	16.386	0.976	1.231	4.77
5	3.16	1.163	10.25	19.129	0.972	1.226	5.42

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	34.00
Average Temperature During Sampling Duration (Deg K)	274.11
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.34
Average Barometric Pressure During Sampling (mm Hg)	694.44
Enter Clean Filter Sampler Inches of Water	3.41
Enter Dirty Filter Sampler Inches of Water	3.16
Average Filter Sampler (mm Hg)	6.13
Enter Total Runtime in Hours (xx.xx)	0.25
	Po/Pa · 0 991

Po/Pa: 0.991

Calculated Flow Rate (m3/min): 1.251

Total Flow (m3): 18.76

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept) Pressure Ratio (Po/Pa) = 1-Pf/Pa % Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

Site and Calibration Information

<u>Site</u> <u>Calibration Orifice</u>

Location: Lift Station Sampler Make: Tisch Environmental

 Date:
 Dec 13, 2023
 Model:
 TE-5028A

 Tech.:
 A. Penny
 Serial:
 1203

 Sampler:
 TE-5170V
 Qa Slope (m):
 0.97323

 Serial #:
 P11162
 TSP VFC
 Qa Int (b):
 -0.01459

Ambient Conditions

Temp (deg F): 38.59

Ta (deg K): 277

Barometric Press (in Hg): 27.34

Ta (deg C): 3.7

Pa (mm Hg): 694.4

Calibration Information

Run	Orifice	Qa	Sampler	Pf		Calculated	% of
<u>Number</u>	<u>"H2O</u>	m3/min	<u>"H2O</u>	mm Hg	Po/Pa	m3/min	<u>Diff</u>
1	3.33	1.198	5.68	10.600	0.985	1.243	3.67
2	3.26	1.186	6.36	11.870	0.983	1.240	4.55
3	3.19	1.173	7.67	14.314	0.979	1.235	5.28
4	3.12	1.161	8.68	16.199	0.977	1.232	6.12
5	3.07	1.151	10.30	19.223	0.972	1.226	6.51

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	38.59
Average Temperature During Sampling Duration (Deg K)	276.66
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.34
Average Barometric Pressure During Sampling (mm Hg)	694.44
Enter Clean Filter Sampler Inches of Water	3.33
Enter Dirty Filter Sampler Inches of Water	3.07
Average Filter Sampler (mm Hg)	5.97
Enter Total Runtime in Hours (xx.xx)	0.22
	Po/Pa · 0 991

Po/Pa: 0.991

Calculated Flow Rate (m3/min): 1.251

Total Flow (m3): 16.52

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept)

Pressure Ratio (Po/Pa) = 1-Pf/Pa

Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

Appendix B Calibration Certificates

MONTREAL

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

EDMONTON

9730 32 Avenue NW Edmonton, AB T6N 1L9

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 www.itm.com • 1.800.561.8187 • information@itm.com

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

Calibration Certificate

Customer: GHD Ltd.

Certificate: C593374-00-01

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 4-Jul-2023

Due Date: 4-Jul-2024

Serial: 3520009

Unit ID: TIIM-CAL-001

Calibration Conditions

Temperature: 22.8°C Humidity: 41.2 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

000

<u>Unit ID</u>	<u>Manufacturer</u>	Model	Cal Date	Due Date
I-1585	Hart Scientific	1521/5627A	20-Apr-2023	20-Apr-2024
I-1969	Ametek	RTC-157A	27-Feb-2023	27-Feb-2024

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIS1), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties iven in this report are based on a coverage factor of k-2 corresponding to a confidence level of approximately 95%

Calibrated by: L. Fuentebella

Luke Fuentebella

©Certificate: C593374-00-01

UAsset: ITM0003733

Calibration Certificate

DEFENDED TO SERVICE STATEMENT OF THE PROPERTY OF

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1

VANCOUVER

REGINA #D, 288 Hodsman Road Regina, SK S4N 5X4

EDMONTON

9730 32 Avenue NW Edmonton, AB T6N 1L9

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

1282 Cliveden Av Delta, BC V3M 6G4

www.itm.com • 1.800.561.8187 • information@itm.com

Test Results

Procedure: FLUKE 1551A EX_RTC-157A, Fluke 1523 Rev: 1

Data Type: As Found Results: Pass

Test Description TEMPERATURE ACCURACY	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
-49.9540 °C		-49.982 °C	-50.004 °C	-49.904 °C	Pass	9.0e-003 °C
-24.9510 °C		-24 999 °C	-25.001 °C	-24.901 °C	Pass	9.0e-003 °C
0 0020 °C		-0.022 °C	-0.048 °C	0.052 °C	Pass	9.0e-003 °C
100.0140 °C		99.993 °C	99.964 °C	100.064 °C	Pass	9.0e-003 °C
154,9970 °C		154.986 °C	154,947 °C	155.047 °C	Pass	9.0e-003 °C

Certificate: C593374-00-01

Calibration Certificate

RECALIBRATION **DUE DATE:**

February 20, 2024

ertificate o

Calibration Certification Information

Cal. Date: February 20, 2023

Rootsmeter S/N: 438320

Ta: 294

Pa: 741.17

°K

Operator: Jim Tisch

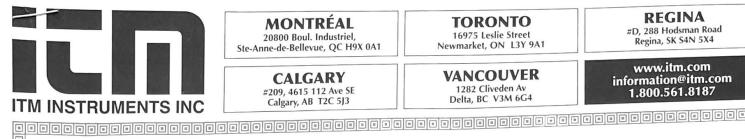
Calibration Model #:

TE-5028A

Calibrator S/N: 1203

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.2300	4.3	1.50
2	3	4	1	0.9590	7.1	2.50
3	5	6	1	0.8670	8.5	3.00
4	7	8	1	0.8040	9.9	3.50
5	9	10	1	0.6110	17.0	6.00


	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9828	0.7990	1.2177	0.9942	0.8083	0.7714		
0.9790	1.0209	1.5720	0.9904	1.0328	0.9958		
0.9772	1.1271	1.7221	0.9885	1.1402	1.0909		
0.9753	1.2130	1.8600	0.9866	1.2272	1.1783		
0.9658	1.5807	2.4354	0.9771	1.5991	1.5427		
	m=	1.55422		m=	0.97323		
QSTD[b=	-0.02303	QA	b=	-0.01459		
`	r=	0.99992	•	r=	0.99992		

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime		
	For subsequent flow rate calculations:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

Standard Conditions						
Tstd:		°K				
Pstd:	Pstd: 760 mm Hg					
		(ey				
	ΔH: calibrator manometer reading (in H2O)					
	ΔP: rootsmeter manometer reading (mm Hg)					
	Ta: actual absolute temperature (°K)					
Pa: actual ba	Pa: actual barometric pressure (mm Hg)					
b: intercept						
m: slope		m: slope				

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30.

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE

Calgary, AB T2C 5J3

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4

www.itm.com information@itm.com 1.800.561.8187

Calibration Certificate

Customer: GHD Ltd.

Certificate: C542161-00-01

Unit Identification

Manufacturer: Dwyer

Model: 475-0-FM

Description: Digital Manometer

Calibration Date

Calibration Date: 1-Dec-2022

Due Date: 1-Dec-2023

Serial: N/A

Unit ID: MAN-CAL-001

Calibration Conditions

Temperature: 21.7°C Humidity: 15 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

Unit ID CAL0224

Manufacturer

Fluke

Model 750P01 Cal Date

12-Sep-2022

Due Date

12-Mar-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: D. Gano

Certificate: C542161-00-01 Asset: ITM0017905

Calibration Certificate

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

www.itm.com information@itm.com 1.800.561.8187

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

Test Results

Procedure: Pressure Gauge 10.00 IN.W.C 0.5% FS /750P01 Rev: 1.1

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
Tolerance used (additive i	f more than one listed):					
0.5% of full scale						
UUT is set to the nominal						
actual pressure read by th 1.000 inH2O	ie system instrument.	1.003 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.6e-002 inH2O
2.000 inH2O		1.983 inH2O	1.950 inH2O	2.050 inH2O	Pass	1.6e-002 inH2O
4.000 inH2O		3.982 inH2O	3.950 inH2O	4.050 inH2O	Pass	1.6e-002 inH2O
6.000 inH2O		5.978 inH2O	5.950 inH2O	6.050 inH2O	Pass	1.6e-002 inH2O
8.000 inH2O		7.969 inH2O	7.950 inH2O	8.050 inH2O	Pass	1.6e-002 inH2O
10.000 inH2O		9.974 inH2O	9.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O

Certificate: C542161-00-01

Calibration Certificate Asset: ITM0017905

Page 2/2

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

www.itm.com information@itm.com 1.800.561.8187

Calibration Certificate

Customer: GHD LTD

Certificate: C542157-00-01

Unit Identification

Manufacturer: TSI Model: 9555-X / 960 Description: VelociCalc

Calibration Date

Calibration Date: 20-Dec-2022

Due Date: 20-Dec-2023

Serial: 9555X1002005

Unit ID: VEL-CAL-002

Calibration Conditions

Temperature: 22.5°C Humidity: 34.8 %

Barometric Pressure: 103.0kPa

General Information

Remark: N/A

Stand	lards	Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
M-012	Airflow Development	83FSL	******* No Cal	ibration Required *********
M-110	Love Controls	HM3531DLF600	11-Oct-2022	11-Oct-2023
M-115	Rotronic	M22W	10-Jul-2022	10-Jul-2023
M-130	Fluke	1552A	13-May-2022	13-May-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: R. Chaaya

Certificate: C542157-00-01 Asset: ITM0071374

Approved b

Calibration Certificate

Page 1/2

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA #D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

		CALGARY	1	ANCOUVER		www.itm.com
INSTRUMENT		#209, 4615 112 Ave Calgary, AB T2C 5J:	SE 3	1282 Cliveden Av Delta, BC V3M 6G4	i	nformation@itm.con 1.800.561.8187
Test Results						
Procedure: TSI 9555-P Data Type: As Found		e Rev: 2				
Data Type, As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	<u>Test Status</u>	Exp Uncert
TEMPERATURE TEST ACCU	IRACY °C					
0.0 °C		0.1 °C	-0.3 °C	0.3 °C	Pass	1.20.001.00
25.0 °C		24.9 °C	24.7 °C	25.3 °C	Pass	1.2e-001 °C 1.2e-001 °C
60.0 °C		60.0 °C	59.7 °C	60.3 °C	Pass	1.2e-001 °C
VELOCITY TEST ACCURACY	ft/min					
	Accessed.					
100 ft/min		99 ft/min	97 ft/min	103 ft/min	Pass	5.8e-001 t/min
200 ft/min		201 ft/min	194 ft/min	206 ft/min	Pass	5.8e-001 t/min
300 ft/min		303 ft/min	291 ft/min	309 ft/min	Pass	5.8e-001 t/min
400 ft/min		402 ft/min	388 ft/min	412 ft/min	Pass	5.8e-001 t/min
500 ft/min		496 ft/min	485 ft/min	515 ft/min	Pass	5.8e-001 t/min
750 fVmin		754 ft/min	727 ft/min	773 ft/min	Pass	5.8e-001 t/min
1000 ft/min		993 ft/min	970 ft/min	1030 ft/min	Pass	5.8e-001 t/min
1500 ft/min		1507 ft/min	1455 ft/min	1545 ft/min	Pass	5.8e-001 t/min
2000 ft/min		2018 ft/min	1939 ft/min	2061 ft/min	Pass	5.8e-001 t/min
3000 ft/min		3005 ft/min	2910 ft/min	3090 ft/min	Pass	5.8e-001 t/min
4000 ft/min 5000 ft/min		3986 ft/min 5011 ft/min	3880 ft/min 4850 ft/min	4120 ft/min 5150 ft/min	Pass	5.8e-001 t/min 5.8e-001 t/min
Certificate: C542157-00-0 Asset: ITM0071374			ibration Certificate			Page 2/
		may not be reproduced				

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Pooya Shariaty Pooya.Shariaty@ghd.com 403.538.7479

www.ghd.com